
A. Training details
We set the batch size to 32 and train the model from

scratch on eight V100 GPUs for 400 epochs. We imple-
ment the model in TensorFlow 2.4 [1]. We use the Adam
optimizer [17] with (lr = 2.5e−3, β1 = 0.0, β = 0.99) for
both the discriminator and the generator.

Perceptual Loss In Eq. 8, the perceptual loss contains
two parts: feature reconstruction loss Lfeature and style re-
construction loss Lstyle. Input an image x, assume i is a
convolution layer then φ(x) will be a feature map of size
Ci ×Hi ×Wi

Lfeature =
∑
i

1

CiHiWi
||φi(x)− φi(y)||22 (12)

Lstyle =
∑
i

||Grami(x)−Grami(y)||2F (13)

where φ(·) is a VGG feature extractor and Grami(·) is a
Gram matrix at layer i whose elements at index (c, c′) are
given by

Grami(x) =
1

CiHiWi

Hi∑
h=1

Wi∑
w=1

φ(x)h,w,cφ(x)h,w,c′

(14)

A.1. Network architecture

In this section, we provide architectures of the applied
model.

Encoder The encoder consists of stacked residual blocks
and each residual block (ResBlock) consists of two convo-
lution layer, where the first layer does not change the spa-
tial size whereas the second one comes with a stride 2 for
down-sampling. The kernel size is 3 × 3. We use the non-
parameterized AttentionPooling as the last layer to aggre-
gate global spatial information.

Layer Output Shape

Image x 512 × 512 × 3

ResBlock 256 × 256 × 32
ResBlock 128 × 128 × 64
ResBlock 64 × 64 × 128
ResBlock 32 × 32 × 256
ResBlock 16 × 16 × 512
ResBlock 8 × 8 × 512
ResBlock 4 × 4 × 512

AttentionPooling 1 × 1 × 512

Table 4. Encoder architecture.

Decoder The decoder includes several StyleBlock, which
is borrowed from the StyleGAN generator [15]. Each Style-
Block takes two inputs: previous feature map and external
modulation vector.

Layer Output Shape

Last Feature 4 × 4 × 512

StyleBlock 8 × 8 × 512
StyleBlock 16 × 16 × 512
StyleBlock 32 × 32 × 512
StyleBlock 64 × 64 × 256
StyleBlock 128 × 128 × 128
StyleBlock 256 × 256 × 64
StyleBlock 512 × 512 × 32

ToRGB 512 × 512 × 3

Table 5. Decoder architecture.

Discriminator The architecture of discriminator is
mostly the same as the encoder, except that the At-
tentionPooling is replaced by a minibatch discrimination
layer [15].

Algorithm 1 Precision and iPrecision

1 # G: generated images set. R: ground truth set.
2 # k: neighborhood size.
3 # net: pretrained feature extractor.
4 import numpy as np
5 # compute features for fake and real images.
6 N = len(G) # or N = len(R)
7 E_g = np.stack([net(g) for g in G]) # fake: Nxd
8 E_r = np.stack([net(r) for r in R]) # real: Nxd
9

10 # compute neighbors’ distance and identity.
11 # we also store the info of data itself.
12 gn_dist, gn_id = neighbor(E_g) # Nx(k+1), Nx(k+1)
13 rn_dist, rn_id = neighbor(E_r) # Nx(k+1), Nx(k+1)
14 precision, iprecision = [], []
15 for e_g in E_g:
16 dist = euclidean_distance(e_g, E_r) # N
17 # check whether e_g in any neighborhood
18 eg_in = dist[:, :, None] <= rn_dist # Nxk
19 # check id(e_g) is equal to any id(e_r).
20 eg_id_eq = (id(e_g) == rn_id[:, 0]) # N
21 # check both condition are met.
22 eg_both = np.logical_and(eg_in, eg_id_eq)
23 pred = np.any(eg_dist_in, axis=0) # k
24 ipred = np.any(eg_both, axis=0) # 1
25 precision.append(pred)
26 iprecision.append(ipred)
27

28 # Average over all fake data.
29 precision = np.stack(pred).mean(axis=0)
30 iprecision = np.stack(ipred).mean(axis=0)

B. iPrecision and iRecall
Figure 8 evaluates the metric with Inception V3. It is

shown that our approach consistently outperforms the base-
lines as in FaceNet. Besides, compared with Figure 5,



Figure 8. iPrecision and iRecall with Inception V3

FaceNet can provide more discriminative quantitative num-
bers.

B.1. Pseudo-code for precision
We provide the pseudoc-code for computing precidion in

Algorithm 1. Recall can be computed in a similar way.



C. More experimental results
C.1. Ablations
C.1.1 The number of skip connections

The other critical factor that affects the restoration is the
number of skip connections. Table 6 quantifies the restora-
tion performances. In this paper, we use 4 skip connec-
tions at resolution nodes (82, 162, 322, 642) by default. As
is seen, more skip connections usually lead to better results,
except for using as many as six.

NO. PSNR↑ LPIPS↓ SSIM↑ FID↓ iPrecision ↑
0 21.16±0.45 0.3358 0.5754 24.30 0.321
1 24.75±0.12 0.3098 0.6668 20.49 0.902
2 26.15±0.04 0.2543 0.6915 19.17 0.945
4 27.43±0.03 0.2349 0.7316 19.19 0.982
6 27.07±0.04 0.3112 0.6707 27.17 0.931

Table 6. On the impact of the number of skip connections.

C.1.2 The impact of noises

We also evaluate how different noises affect the restoration
results given the same input. It is observed that: (i) The in-
fluence of noises diminishes with more skip connections as
seen in Table 6. (ii) Less number of skip connections can
generate more diverse images at the cost of sacrificing face
identities, as seen in Table 6 and Figure 11. (iii) Stochas-
tic generation doesn’t lead to instability issues as seen in
Table 6.

C.1.3 Adversarial data augmentation

Table 7 compares the effect of adversarial data augmenta-
tion.

Adv. Aug. PSNR↑ SSIM↑ LPIPS↓ FID↓
N 26.48 0.7021 0.2574 20.22
Y 26.89 0.7134 0.2452 19.77

Table 7. On the impact of adversarial data augmentation.

C.1.4 On the impact of α

Except for the aforementioned model design that is critical
to balance reconstruction and generation, the relative weight
α is obviously crucial. Overall, we find that increasing α
causes very opposite results in terms of PSNR and FID. This
happens because LADV and LREC optimize the generator to-
wards different directions. Larger α helps FID but harms
PSNR. In contrast, smaller α can improve PSNR but gener-
ates blurry samples. In this work, we simply use α = 1.0
by default.

Methods PSNR↑ LPIPS↓ iPrecision↑ Preference (%)↑
DFDNet 23.68 0.434 0.462 3.2
GFPGAN 24.19 0.296 0.711 5.3
GPEN 23.91 0.331 0.773 15.1
Ours 28.01 0.205 0.943 76.41

Table 8. Metric comparison on BFR.

C.1.5 Discussion on failure cases

Figure 9 shows two failed restoration cases. The unrealistic
artifacts usually appear in face key points, e.g., eyes and
teeth. It in turn suggests that optimization on these regions
could be an interesting direction to explore.

Input Output GT

Figure 9. Failure restoration.

C.1.6 More qualitative results

Figure 13 compares the restoration results with different ap-
proaches on real low-quality images. Figure 14-Figure 16
show more qualitative results on BFR, ×8 and ×16.

C.2. Human evaluation

Talbe 8 shows the human evaluation results on BFR task.
Similar to Table 2, we can also observe that our proposed
metric is a better indicator for face restoration.

In terms of detailed human study, we randomly select
100 samples from the testing images and distribute them
to 5 experts that have been devoted to the camera software
development for years. In each example, we place input de-
graded image, ground truth and four restored images from
different approaches, as shown in Figure 12. The four re-
stored images are places in random order for each example.
People were asked to select the best restored face image fol-
lowing standards:

• It shows less color shift, e.g., the eyeball, hair color
and skin tone should be consistent with ground truth.
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Figure 10. Qualitative comparison by varying the number of skip connections. We count from the layer with feature resolution 8× 8, i.e.,
there exist possible skip connections at resolution nodes {2n+2 × 2n+2}6n=1 when we set the maximum input resolution at 512× 512.

• It has sharp and defined features

• It looks realistic and shows no or less artifacts.

• No excessive features are observed, e.g., the facial fea-
tures shouldn’t be too bright or crispy to look realistic,
the appearance of eyelid and eyelash should be consis-
tent, etc.
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Figure 11. Restored samples with different random seeds when no skip connections are used.



Figure 12. An example of human evaluation



Input DFDNet GFPGAN* GPEN Ours

Figure 13. Restoration comparison on real images. The real low-quality images are available in DFDNet [20] public repository. Note
that the above real-world degraded images are usually contaminated by unnatural color distortion, which is not synthesized in the standard
protocol as in Eq. 11. Our approach is able to correct the color shift and produce natural faces.
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Figure 14. More qualitative comparison across various BFR methods.



Noticeable Area Input Bicubic GPEN GFPGAN* Ours GT

eye, background

color, hair

hair, eye, beard

eye, expression

eye, color

eye, expression

expression, wrinkle

eye

Figure 15. More qualitative comparison across various 16× : 32× 32→ 512× 512 SR methods.



Noticeable Area Input Bicubic GPEN GFPGAN* Ours GT

eye, expression

eye, hair

eyebrow, beard

wrinkle, beard

eye, age, wrinkle

hair, teeth

eye, skin

eye, expression

Figure 16. More qualitative comparison across various 8× : 64× 64→ 512× 512 SR methods.


