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A. More Implementation Details

In this section, we present more details about the Base-
line model. As mentioned in main text (Sec. 3.1), for higher
semantic consistency, we adhere to the mainstream practice
of aligning features on the source and target domains, at
both mid-to-upper layers of the backbone (i.e. image-level)
and ROI layer (i.e. instance-level), with the help of Gra-
dient Reversal Layer (GRL) [6]. Concretely, in consistent
with [13], for the features output from the last three blocks
of VGGI16 [14], or last three layers of ResNet101 [8], we
feed them into separate discriminators (D, Dy and Ds,
their concrete architecture is shown in Tab. A.1) connected
via a GRL to determine the domain to which the features be-
long. After that, three image-level domain adaptation losses
are calculated as follows:
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where z;, x; and x;” denotes the features output from the
last three blocks of the backbone for the i-th training image,
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d; indicates the corresponding domain label, and n4 and n
refer to the total number of images within a mini-batch in
source and target domains, respectively. Besides, L., sug-
gests the cross-entropy loss, while the L ; indicates the fo-
cal loss, with its v set to 5 following [|1]. Likewise, the
alignment of high-level feature patches (ROIs) is also em-
ployed. With the discriminator D, illustrated in Tab. A.1,
the instance-level loss is formally as
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where r; denotes the i-th ROI and d; indicates the corre-
sponding domain label. As for L;,s, we use cross-entropy
loss for the Normal-to-Foggy and Cross-Camera scenarios
and focal loss for the Real-to-Artistic scenario, with y being
also set to 5.

In conclusion, the overall training objective of Baseline
becomes:

L= Laer + M LRI+ LG7 + LT + L), )

where \; is set to 1.0. Additionally, we concatenate the
image-level features processed by previous three discrimi-
nators with the high-level ROI representation after FCs, in
a manner similar to [11, 13], to realize greater training sta-
bility.

B. Additional Ablation Study

For the localization-specific inconsistency alignment
module, the effect of different measures of dispersion is
further investigated here. To reveal more clearly their im-
pact on the localization branch, we remove the classifica-
tion branch. The results on the Real-to-Artistic scenario are
displayed in Tab. B.1. It showcases that (1) a measure that
is closer to the original scale is preferred; (2) L2-norm de-
livers a more appropriate and precise estimate to behavioral
uncertainty among diverse localizers.



Discriminator D2 and D3

Discriminator Dy

Discriminator D,

Conv 3 x 3 x 512, stride 2, pad 1

Conv 1 x 1 x 256, stride 1, pad 0 Batch Normalization, ReLU, Dropout ReLU

ReLU Conv 3 x 3 x 128, stride 2, pad 1 Conv 3 x 3 x 128, stride 2, pad 1
Conv 1 x 1 x 128, stride 1, pad 0 Batch Normalization, ReL U, Dropout RelLLU

RelLU Conv 3 x 3 x 128, stride 2, pad 1 Conv 3 x 3 x 128, stride 2, pad 1

Batch Normalization, ReLU, Dropout ReLU
Average Pooling
Fully connected 128 x 2

Conv 3 x 3 x 512, stride 2, pad 1

Average Pooling
Fully connected 128 x 2

Table A.1. Architecture of discriminators.

Conv 1 x 1 x 1, stride 1, pad 0
Sigmoid
Measurement mAP
Mean absolute deviation 42.7
Variance 41.8
Standard deviation 432

Table B.1. Ablation study on different measures of dispersion.

C. Visualization

We provide some detection results of vanilla detector
(i.e. Source Only [10]), state-of-the-art adaptive detectors
(e.g. HTCN [1] and UMT [4]), and our framework TIA.
Fig. F.1 illustrates the comparison of detections on the PAS-
CAL VOC [5] — Clipart [9] benchmark. It is observed
that our proposed TIA outperforms both Source Only and
UMT [4], and produces more accurate detection results,
i.e., more foreground objects are identified (Row 1&2), and
higher quality bounding boxes are provided along with ac-
curate categorization (Row 3-5). Qualitative results on the
Cityscapes [3] — Foggy Cityscapes [!2] benchmark rep-
resented by Fig. F2 also demonstrates the superiority of
our TIA. For example, in the first row, for the two cars
on the left, the bounding box given by HTCN is relatively
off-target, while ours method present more compact bound-
aries, compared to Source Only’s.

D. Limitations

The discrepancy between source and target domains in
the label space, i.e., label shift, substantially affects the de-
sign philosophy and severely limits the performance of ex-
isting domain adaptive detectors. In this subsection, we will
provide in-depth analysis of how label shift limits our TTA
for each dataset benchmark.

The  benchmarks used in  Normal-to-Foggy
(Cityscapes [3] — Foggy Cityscapes [12]) and Real-to-
Artistic (PASCAL VOC [5] — Clipart [9]) are essentially
appropriate and they allow a good evaluation of the perfor-
mance of various domain adaptive detectors. Specifically,
the former case is ideal, since it shares an identical label
space between the source and target domains, while the

latter one has its label shift diluted due to the scale of
the source domain. In this context, it is observed that,
our framework exceeds the upper bound indicated by
Target Only on the former benchmark and easily achieves
state-of-the-art performance on the latter benchmark.

It is quite different in the Cross-Camera scenario. We
find that the label shift of the benchmark (KITTI [7] «
Cityscapes) employed in this scenario is dominated by the
imbalance in the foreground-background ratio, namely the
inconsistency in the average number of objects between the
source and target domain data. In fact, the average numbers
of instances of Cityscapes and KITTI are 9.1 and 3.8, re-
spectively. This directly leads to two serious problems. On
the one hand, we observe that the Source Only model under-
goes severe overfitting issue during training, which means
that we underestimate the lower bound of the benchmark;
on the other hand, it imposes higher demands on the cross-
domain performance of RPN, and this straightforwardly un-
dermines the effectiveness of the existing mainstream ap-
proaches that focus on feature alignment for it.

In summary, two arguments are made. First, existing
methods are highly inefficient in coping with label shift.
In light of [15], although the execution of domain align-
ment alone reduces the divergence between domains (the
second term in Theorem 1), it leads to arbitrary increases in
A* (the third term in Theorem 1), hence eventually, the tar-
get errors of detectors cannot be well-guaranteed. For this
reason, taking into account the detectors’ empirical predic-
tions on the target domain, or namely, the behavior of label
predictors, is gradually emerging as a necessity. Moreover,
compared to classification tasks, the label shift in object de-
tection task is considerably complicated. It is no longer lim-
ited to the differences in category proportions, but is more
widely distributed in spatial differences in scale, position,
etc. of bounding boxes. These two facts drive the proposal
of TIA on a different aspect.

Second, in view of the fact that the label shift cannot be
well estimated nor truly eliminated, we argue that there is
a gap between the true upper bound and the present upper
bound specified by Target Only, according to [16]. Under
such circumstances, the close performance of the domain



adaptive detectors in the Cross-Camera benchmark can be
reasonably explained.

E. Societal Impact

Domain adaptive object detection is a prevalent visual
scene understanding task and we follow the convention ex-
perimental setting as in [1,2,4, | 1]. Hence if the method is
used properly, there is no negative social impact.

F. Code and Dataset License

Our code is built on open-sourced object detection code
with MIT license. As for the datasets, the Cityscapes [3]
and its modification Foggy Cityscapes [12] are made freely
available to academic and non-academic entities for non-
commercial purposes such as academic research, teaching,
scientific publications, or personal experimentation; and
the PASCAL VOC [5] includes images obtained from the
“flickr” website; Clipart [9] is meant for education and re-
search purposes only; in addition, KITTI [7] is licensed
under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 License.
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(a) Source Only (b) UMT [4] (c) Our TIA

Figure F.1. Illustration of the detection results on the PASCAL VOC — Clipart benchmark. Compared to Source Only, UMT’s localization
performance is worse, while ours is better.



(a) Source Only (b) HTCN [1] (c) Our TIA

Figure F.2. Illustration of the detection results on the Cityscapes — Foggy Cityscapes benchmark. Our TIA identifies more objects and
delivers more accurate bounding boxes.



