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Losses. During TubeR training, we first produce an optimal
bipartite matching δ between predictions and ground truth
tubelets. δ(i) is the index of the prediction matched with the
i-th ground-truth tubelet. We need to calculate the losses be-
tween a set of ground-truth tubelets Y=(Ycoor, Yswitch, Yclass)
and the matched predictions y=(ycoor, yswitch, yclass).

We utilize four losses: an action classification loss, a
box matching loss, a generalized IoU [3] loss and an ac-
tion switch loss to train TubeR. The total loss is a linear
combination of the four losses:

L = λ1Lswitch(yswitch, Yswitch) + λ2Lclass(yclass, Yclass)

+λ3Lbox(ycoor, Ycoor) + λ4Liou(ycoor, Ycoor).
(1)

Lclass = −
N∑
i=1

L∑
j=1

[Yclass(i, j) log yclass(δ(i), j)

+(1− Yclass(i, j)) log(1− yclass(δ(i), j))] .

(2)

Lswitch = −
N∑
i=1

Tout∑
j=1

[Yswitch(i, j) log yswitch(δ(i), j)

+(1− Yswitch(i, j)) log(1− yswitch(δ(i), j))] .

(3)

Lbox =

N∑
i=1

Tout∑
j=1

∥Ycoor(i, j)− ycoor(δ(i), j)∥1. (4)

Liou =

N∑
i=1

Tout∑
j=1

Giou(Ycoor(i, j), ycoor(δ(i), j)), (5)

Giou(b, b̂) = 1−

(
|b
⋂
b̂|

|b
⋃
b̂|

− |B(b, b̂)\b
⋃
b̂

B(b, b̂)

)
. (6)

Here Giou(b, b̂) is the generalized IoU [3] loss between
two given boxes b and b̂. We empirically set the scale param-
eter as λ1=1, λ2=5, λ3=2, λ4=2.

*Equally contributed.

Model f-mAP@IoU=0.5

Baseline (using per-frame boxes) [1] 22.8
Only with tubelets 27.7
Long-term context without tubelets 25.8
Long-term context + tubelets 28.8

Table 1. Comparisons between a two-stage baseline and TubeRs.
All TubeRs performs significantly better than the baseline.

TubeR vs. hypotheses-based method on UCF101-24. We
compare TubeR and [2], which depends on positional hy-
potheses to do detection on UCF101-24, with per-class
Video-mAP@0.5 in Figure 1. For actions with multiple peo-
ple, TubeR detects the action more precisely and produces
higher video-mAP, like 44.83% for ‘BasketballDunk’ com-
pared to [2] with video-mAP 1.19%. The tubelet attention
mechanism better models the relations between the real ac-
tion tubelets and surroundings. We note that [2] hardly works
for ‘Basketball’ and ‘TennisSwing’ which have many transi-
tional states. TubeR improves significantly for theses action
categories. TubeR performs slightly worse for ‘LongJump’
in which actors may change scales along time. As [2] applies
multiple scale anchors and multiple level features, it is more
robust in this case. Incorporating multiple level features into
TubeR will further help improve TubeR results.

TubeR vs. two-stage method on AVA. We use CSN-50 [4]
as backbone with 1-view evaluation protocol unless spec-
ified otherwise. We report frame-mAP@IoU=0.5 for AVA
v2.1. We compare the performance between a baseline [1]
using offline person detection rather than a Region-Proposal-
Network, and our variable TubeRs. We used the same input
(32×2). To make a fair comparison, the baseline is evaluated
using bounding boxes generated by TubeR (93.3% AP for
person localization). We clarify that the short-term context
feature Fb is the backbone feature, which is also used to
generate tubelet-level feature Ftub. Together they belong to
our tubelet design. The results are shown in Table 1. Only
with tubelets achieves +5% frame-mAP compared to the
baseline (using per-frame boxes) and improves more than
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Comparison between TubeR and [2] with video-mAP@IoU=0.5 on UCF101-24
TubeR
Kalogeiton et al.[2]

Figure 1. Comparison between TubeR and a hypotheses-base detector on UCF101-24. TubeR performs better on most of the action
classes.
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Figure 2. Action tubelets visualization on UCF101-24 and JHMDB51-21. Each action tubelet contains its action labels and boxes on each
frame. (a-b) are from UCF101-24 to show the cases with deformable actors and crowded people. (c-d) are from JHMDB51-21 to show the
fast action and interacted action.

long-term context without tubelets. Tubelet design not only
brings performance gain, but also directly predicts tubelets
without an offline linker. Our long-term context features are
effective for long videos with shot changes. It results in a
modest parameter increase from 70.1M to 84.3M, which is
lower than most two-stage models.

Visualization. We show more action tubelets generated by
TubeR in Figure 2. TubeR performs well in various cases.
In Figure 2 (a-b), we show the cases with deformable actors

and crowded people from UCF101-24. Figure 2 (c-d) present
the fast action and interacted action from JHMDB51-21.
Moreover, some challenging cases on AVA are visualized in
Figure 3. All these cases show our TubeR is able to generate
precise tubelets with various length.
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Figure 3. Action tubelets visualization on AVA. We use different colors to mark different tubelets. Each action tubelet contains its action
labels and boxes on each frame. We only show the action labels on the first frame of an action tube. We show some challenging cases here.
(a) and (b) Raw actions: “play musical instrument”, “hug (a person)” . (c) Tiny actions. The actors are very tiny. (d) Crowded cases. (e-h)
Shot cuts. All these cases show our TubeR is able to generate precise tubelets with various length.
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