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Supplementary Material

1. Implementation Details

Network Architecture
The target segmentation network is a PointNet segmenta-
tion network [3], where each input point is firstly processed
by a 5-layer MLP with output channel sizes of 64, 64, 64,
128, 1024. A max-pooling is then applied along the point
dimension to obtain a 1024-dim global embedding, which
is then copied and concatenated with the output of the sec-
ond layer (64-dim). The concatenated features are then pro-
cessed by another 5-layer per-point MLP with output chan-
nel sizes 512, 256, 128, 128, 2. Every layer of the MLP
except the last one has batch normalization and ReLU. The
output logits are used to extract the target points from the
input.
At the 1st-stage, we use a vanilla PointNet [3] to encode
the spatial-temporal target points (with the temporal chan-
nel) into a 256-dim embedding. The PointNet includes a
4-layer per-point MLP with output sizes 64, 128, 256, 512,
a point-wise max-pooling layer, and another MLP with out-
put sizes 512, 256. We have batch normalization and ReLU
for every layer of the MLP. On top of the encoded embed-
ding, we independently apply two MLPs with 3 hidden lay-
ers (128,128,128) to obtain the motion state (6-dim) and the
Relative Target Motion (RTM) for previous box refinement
(4-dim). The motion state includes a 4-dim RTM and a 2-
dim motion classification logit.
At the 2nd-stage, we use a similar PointNet [3] as in the
1st-stage to regress a 4-dim RTM on the denser target point
cloud (without the temporal channel). The PointNet in-
cludes a 4-layer per-point MLP with output sizes 64, 128,
256, 512, a point-wise max-pooling layer, and another MLP
with output sizes 512, 256, 4. We have batch normalization
and ReLU for every layer of the MLP except the last one.
Training & Inference
We train our models using the Adam optimizer with batch
size 256 and an initial learning rate 0.001, which is decayed
by 10 times every 20 epochs. The training takes ∼ 4 hours
to converge on a V100 GPU for the KITTI Cars. During
the inference, the model tracks a target frame-by-frame in
a point cloud sequence given the target BBox at the first

Algorithm 1 Workflow of the 1st-stage

Input: Segmented target points P̃t−1,t and possible target
BBox Bt−1 at the previous frame.
Output: A relative target motion state ( including a RTM
Mt−1,t and 2D binary motion state logits), a refined target
BBox B̃t−1 at the previous frame, and a coarse target BBox
Bt at the current frame.

1: Use a PointNet to encode P̃t−1,t to an embedding E .
2: Obtain an RTM with respect to Bt−1 by applying an

MLP to the embedding E .
3: Obtain the refined BBox B̃t−1 at the previous frame by

transforming Bt−1 using the RTM predicted in step 2.
4: Obtain the motion state by applying another MLP to the

embedding E . The the motion state includes an RTM
Mt−1,t ∈ R4 and a 2D logit indicating whether the
target is dynamic or not.

5: If the target is dynamic, obtain the coarse Bt by trans-
forming B̃t−1 using the RTM Mt−1,t. Otherwise, set
Bt = B̃t−1.

Algorithm 2 Workflow of the 2nd-stage

Input: Segmented target points P̃t−1,t, the coarse target
BBox Bt at the current frame and the motion state predicted
in the 1st-stage.
Output: A refined target BBox B̃t at the current frame.

1: Extract P̃t−1 ∈ RMt−1×3 and P̃t ∈ RMt×3 from
P̃t−1,t ∈ R(Mt−1+Mt)×4 according to the timestamp.

2: If the target is dynamic, transform P̃t−1 to P̂t−1 using
the RTM Mt−1,t. Otherwise, simply set P̂t−1 = P̃t−1.

3: Form a denser target point cloud P̂t ∈ R(Mt−1+Mt)×3

by merging P̂t−1 and P̃t.
4: Transform P̂t to the canonical coordinate system de-

fined by Bt.
5: Apply a PointNet on the canonical P̂t to regress a RTM.
6: Obtain the refined BBox B̃t by transforming Bt using

the RTM predicted in step 5.
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Figure 1. Distributions of distractors for Cars (Vehicles) in KITTI, NuScenes, and Waymo Open Dataset. We enlarge each target BBox by
2 meters and count the distractors inside. Objects with the same category as the target are regarded as distractors.
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Figure 2. The pipeline of M2-Track. The data flow is illustrated with black lines.

frame.
Detailed Workflow
The overall pipeline with the data flow of M2-Track is pre-
sented in Fig. 2. The detailed description of the 1st-stage
and 2nd-stage are provided in Alg. 1 and Alg. 2, respec-
tively.
4DOF RTM Transformation
We focus on the 4DOF RTM within two successive frames.
Given a 4D RTM (∆x,∆y,∆z,∆θ), we can construct a
transformation matrix T ∈ R4×4 as follows:

cos (∆θ) − sin (∆θ) 0 ∆x
sin (∆θ) cos (∆θ) 0 ∆y

0 0 1 ∆z
0 0 0 1

 (1)

We define the above process as a function T : R4 7→ R4×4.
Point Transformation. Given any object point p =
(x, y, z) in a BBox B = (xb, yb, zb, θb, wb, lb, hb), we can
transform it using an RTM = (∆x,∆y,∆z,∆θ) under the

homogeneous coordinates:


x̂
ŷ
ẑ
1

 = T (B[: 4])× T (RTM)× T (B[: 4])−1 ×


x
y
z
1

 (2)

Here p̂ = (x̂, ŷ, ẑ) denotes the transformed point. And
B[: 4] = (xb, yb, zb, θb) is the 4DOF pose of the BBox B.
Note that we transform all scenes from different datasets
to the same right-handed coordinate system with the z-axis
pointing upward.

Box Transformation. For a BBox B = (x, y, z, θ, w, l, h),
we transform its center using Eqn. 2. The transformed
BBox is B̂ = (x̂, ŷ, ẑ, θ+∆θ, w, l, h), where (x̂, ŷ, ẑ) is the
transformed center, (θ + ∆θ) is the transformed heading
angle, and w, l, h are the width, length and height of the
BBox which remain unchanged.
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Figure 3. Visualization of the target segmentation and motion-assisted shape completion. Pictures in the same column are from the same
case. The completion results demonstrate that our model learns good enough relative target motions.

2. More Analysis
Distractor Statistics
We count the number of distractors in each object’s neigh-
borhood in the training set of KITTI [2], NuScenes [1],
and Waymo Open Dataset (WOD) [5] respectively. Specif-
ically, we enlarge each target BBox by 2 meters and count
the number of annotated BBoxs which not only intersect
with the enlarged area but also have the same category as
the target. Fig. 1 illustrates the distributions of distrac-
tors for cars/vehicles. It shows that more than two-thirds
(69%) of the regions in KITTI are free of distractors. While
in NuScenes and WOD, distractors are very common, es-
pecially for WOD. Besides, though we only consider a
pretty small neighborhood around the target, some regions
in NuScenes and WOD have even more than two distrac-
tors. We do the same analysis on the pedestrians in KITTI
and find that 68.3% of the regions has at least 1 distrac-
tor(s). All of these observations, together with our main ex-
periment results, prove that M2-Track is much more robust
to distractors than previous matching-based approaches.
Larger search area for NuScenes Cars
By default, we enlarge the (predicted) target BBox at previ-
ous frame by 2 meters and collect points inside to generate
the inputs. This strategy is also adopted in P2B [4] and
BAT [6] to generate their search areas. The 2 meters larger
area is sufficient for KITTI and WOD, where keyframes
are sampled at 10Hz. However, NuScenes only provides
keyframes at 2Hz. Thus, the target may move more than
2 meters even within two consecutive keyframes. For a
fair comparison, we only report our results with 2 meters
in the main manuscript. In Tab. 1, we re-evaluate our per-
formance on NuScenes Cars with 5 meters larger search
area. Note that using a larger area does not incur more
computational cost because we keep the number of sampled
points unchanged. As shown in Tab. 1, we can further im-
prove the performance of M2-Track by using larger search
areas. However, due to the increase of distractors and spar-

Table 1. Larger search area for NuScenes Cars.

Method Success Precision

BAT [6] (2m) 40.73 43.29
BAT [6] (5m) 37.14 ↓ 3.59 39.92 ↓ 3.37

P2B [4] (2m) 38.81 43.18
P2B [4] (5m) 38.48 ↓ 0.33 42.15 ↓ 1.03

M2-Track (2m) 55.85 65.09
M2-Track (5m) 58.35 ↑ 2.50 67.04 ↑ 1.95

sity, larger search areas instead harm the performance of
P2B and BAT.
Limitations
Unlike appearance matching, our motion-centric model re-
quires a good variety of motion in the training data to en-
sure its generalization on data sampled with different fre-
quencies. For instance, our model suffers from considerable
performance degradation if trained with 2Hz data but tested
with 10Hz data because the motion distribution of the 2Hz
and 10Hz data differs significantly. But fortunately, we can
aid this using a well-design motion augmentation strategy.

3. Visualization
Target Segmentation
Our model depends on the target segmentation to learn the
relative target motion (RTM). The first row in Fig. 3 shows
our target segmentation results. We can see that most seg-
mented points are from the target objects, demonstrating the
effectiveness of spatial-temporal learning.
Motion-assisted Shape Completion
In the 2nd-stage, we leverage the RTM Mt−1,t to complete
the target point cloud at the current frame. As shown in
the second row in Fig. 3, our method correctly merges the
point clouds from two consecutive frames, using the pre-
dicted RTM. These results demonstrate that the RTMs are
correctly modeled by our method.
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Figure 4. Visualization results for Cars.

Advantageous Cases
More qualitative comparison results are in Fig. 4 and Fig. 5.

We also provide animated results in the attached video. We
can observe that our M2-Track consistently shows its ad-
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Figure 5. Visualization results for Pedestrians.

vantage when the scene is sparse, the relative target mo-
tion is large, or distractors exist in the target’s neighbor-
hood. However, since our M2-Track only takes LiDAR
point clouds as input, it fails on extremely sparse scenar-
ios where the number of target points is almost zero (e.g.
the second row in Fig. 4). Actually, this is a common is-
sue for LiDAR-based SOT and could be probably solved by
using multi-modal data (e.g. RGB images)
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