
This supplementary material contains the following three
sections. Section A presents hyperparameter analysis on the
weights in our formulated losses. Section B shows more
qualitative results to compare the performance of single-
modality SSD, multi-modality SSD, and our S2M2-SSD.
Section C discusses the limitations of our current approach.

A. Hyperparameter Analysis
To determine the weights, we fix the weights of a module

once fine-tuned then tune the weights of the next module.
Table 1. Effect of different wr

1 & wr
2 (see Eq.(2) in main paper).

wr
2 | wr

1 = 1 3 4 5 6 7
NDS 52.4 52.8 53.0 52.6 52.3
mAP 43.5 43.7 43.9 43.8 43.6

wr
1 | wr

2 = 5 0.5 0.75 1 1.25 1.5
NDS 52.8 52.7 53.0 52.8 52.6
mAP 43.6 43.8 43.9 43.6 43.5

Effect of wr
1 and wr

2. We try different values of wr
1 and

wr
2 in the classification response distillation loss (see Eq.(2)

in main paper). As Table 1 above shows, setting wr
2=5 and

wr
1=1 lead to the highest NDS and mAP values, as focus-

ing more on the false predictions by setting a larger wr
2 can

improve both the recall rate and precision.
Table 2. Effect of different wv

1 & wv
2 (see Eq.(5) in main paper).

wv
2 | wv

1 = 2 6 7 8 9 10
NDS 53.4 53.5 53.8 53.1 53.2
mAP 43.6 43.7 44.2 43.8 43.7

wv
1 | wv

2 = 8 0.5 1 2 3 4
NDS 53.3 53.4 53.8 53.4 53.1
mAP 43.4 43.7 44.2 43.4 43.2

Effect of wv
1 and wv

2 . Similarly, we try different values
of wv

1 and wv
2 . Results in Table 2 show that the model at-

tains the best performance with wv
1=2 and wv

2=8 (see Eq.(5)
in main paper). Also, the difference between the two fac-
tors should not be further enlarged, since it may hinder the
knowledge transfer of the true positive features.

Table 3. Effect of different wp
f (see Eq.(9) in main paper).

wp
f 1.0 1.5 2.0 2.5 3.0

NDS 52.1 52.4 52.7 52.4 52.3
mAP 43.2 43.4 43.8 43.6 43.4

Effect of wp
f . From Table 3, we analyze the effect of weight

wp
f in Eq.(9) of the main paper, so we decide to set it as 2.

Effect of G. Further, we analyze the effect of G in Eq.(12)
of the main paper. As shown in Table 4, we can see that a
larger or smaller grid size than 5×5 decreases the detection
performance, so we argue that 5×5 is a trade-off between
different classes of objects with various sizes and shapes.

Table 4. Effect of grid size G (see Eq.(12) in main paper).

G 3×3 4×4 5×5 6×6 7×7
NDS 51.9 52.3 52.6 52.4 52.3
mAP 42.4 42.6 43.2 43.0 43.0

B. More Visualization Results
Figure 1 shows more BEV detection results to compare

the performance of single-modality SSD, multi-modality
SSD, and our S2M2-SSD with four groups of results shown
on its top-left, top-right, bottom-left, and bottom-right.
Comparing the first and second rows in each group, we can
see that multi-modality SSD (orange frame) predicts ob-
jects more accurately than the single-modality SSD (black
frame). Due to the rich semantics in the RGB images, multi-
modality SSD can remove many false positives far away
from the LiDAR sensor or near the ground truths, which is
significant to improve the detection precision. Comparing
the second and third rows in each group, we can see that our
S2M2-SSD (blue frame) can predict bounding boxes very
close to those of the multi-modality SSD. Also, we can see
that our S2M2-SSD can further remove more false predic-
tions near the ground-truth objects, especially for the large-
scale ones, e.g., bus and car. Such results are consistent
with the evaluated APs shown in the paper. These improve-
ments show that our designed approach can effectively train
the single-modality SSD to simulate LiDAR-image features
and responses from the multi-modality SSD.

C. Limitations
First, S2M2-SSD employs both point clouds and RGB

images in model training that involves two parallel SSDs,
so the training time tends to be longer than conventional de-
tectors. To fuse the images and point clouds, it requires a
high-performance 2D segmentation network pre-trained on
all images of the dataset to segment the input images for
the multi-modality SSD. Particularly, these images should
be captured under sufficient light and in high resolution to
obtain clear textures. Second, we experiment our approach
on all ten classes of objects with varying shapes and sizes
in nuScenes. Yet, for objects out of these ten classes, our
S2M2-SSD may not recognize them well. To reflect the
complexity of real scenarios in autonomous driving, detect-
ing objects of more classes is also important. Building or in-
corporating another dataset to provide more classes beyond
nuScenes can be helpful. Last, our S2M2-SSD is trained
on point clouds of around 30k points per frame, which are
produced by a 32-beam LiDAR sensor. For point clouds
collected by a sensor with more beams or covering a larger
scan area, the massive input points may make the training
of S2M2-SSD infeasible with the current settings.



Figure 1. Comparing the BEV detection results produced by single-modality SSD (black frame, 1st & 4th rows), multi-modality SSD
(orange frame, 2nd & 5th rows), and our S2M2-SSD (blue frame, 3rd & 6th rows). Exploring the ground-truth bounding boxes (red)
and predicted bounding boxes (green) indicates that our S2M2-SSD can remove more false predictions and realize more accurate object
localization compared with the single-modality SSD. Our predicted bounding boxes are closer to those of the multi-modality SSD.


