
Supplementary Material

1. Patchmatch in Flow
The traditional Patchmatch methods [1] consists of three

components: Random Initialization, Propagation and Ran-
dom Search.

(a) Random Initialization

(b) Propagation

(c) Random Search

(d) Local Search

Figure 1. A toy example for the Patchmatch in flow

In the initialization stage, the flow is initialized either
randomly or based on some prior information. A toy exam-
ple for this stage is shown in Fig. 1a, the flow is initialized

randomly. So for a patch represented by the red box with
its 4 neighbors represented by the white, blue, yellow and
green box respectively in the source image, the random flow
relation can be represented as the dotted arrows to the tar-
get patches. That is to say, the red box in the source image
moves to the red box in the target image with a random flow.
In DIP, the flow is initialized randomly at the begining and
after getting the flow at a 1/16 resolution, we use it as an
initial flow at the 1/4 stage.

In the propagation stage, every patch compares the costs
of its own flow with that of its neighbors and updates them
if the flow of its neighbors lead to a lower cost. As the
Fig. 1b shows, after the initialization, for the red box, the
flows from itself and its neighbors will be used to compute 5
correlation volume, and it is obvious that the flow candidate
from the yellow box results in the maxmium correlation. So
the flow of the red box will be update to the flow from the
yellow box. In order to make the propagation stage friendly
to the end-to-end pipeline, we shift the flow map toward the
4 neighbors(top-left, top-right, bottom-left, botton-right) so
that we can use the flow from the 4 neighbors to compute
the corresponding correlation by a vectorization operator.
For example, when shifting the flow to the down-right, the
point(1,1) will get the flow of point(0,0), the correlation at
point(1,1) actually is computed by the flow at point(0,0).
After shifting 4 times, we can get 5 correlation coefficients
for point(1, 1) based on the flow from point(1, 1), (0,0),
(0,2), (2,0), (2,2). Then we can choose the best flow for
point(1, 1) according to correlation volume.

The random search step is an essential step to make
Patchmatch work. Propagation can converge very quickly
but often end up in a local minimum. So it is necessary to
introduce new information into the pipeline. In the random
search stage, it is achieved by selecting a flow candidate
randomly from an interval, whose length decreases expo-
nentially with respect to the number of searches. Just like
the Fig. 1b shows, the flow of the red box is updated and is
closer to the good match, but it is not the best match. So
it is necessary to add the random search stage to get more
flow candidates further. As the Fig. 1c shows, the candi-
dates can be searched in the target image by a binary ran-
dom search method. Centered on the red box, the first ran-
dom search will be done within the big yellow box whose
radius is min(imagewidth/2, imageheight/2), and the better
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match can be found at the small yellow box(if the small
yellow box gets a worse match, the flow won’t be updated).
So the next random search will be done centered with the
small yellow box within the big white box, and luckily the
random search gets the small white box which is much bet-
ter than the small yellow box and is extremely close to the
best match. So after this stage, the flow for the red box is
updated to the motion with the small white box which is
represented by the white dotted arrows. However, random
search is not friendy to the deep learning pipeline. So we
replace this stage with a local search method, which aggre-
gates the flow candidates from a 5x5 windows on the 1/16
resolution coarsely and the 1/4 resolution finely. It can be
also represented by a toy example shown as the Fig. 1d, the
good match can be found by aggregrating within the yel-
low box. And experiments also confirm that this alternative
works well.

It is recommend to refer the work [9], they make a good
summary of Patchmatch and application to stereo task.

2. Domain-invariance in Stereo Matching

In this supplementary document, we first applied DIP to
Stereo to demonstrate the portability. The core of the stereo
matching algorithm is to obtain a dense disparity map of
a pair of rectified stereo images, where disparity refers to
the horizontal relationship between a pair of corresponding
pixels on the left and right images. Optical flow and stereo
are closely related problems. The difference is that opti-
cal flow predicts the displacement of the pixel in the plane,
while stereo only needs to estimate the displacement of the
pixel in a horizontal line. Therefore, we improved the local
search block in DIP to make it more relevant to stereo task.
Specifically, we reduced the search range of local search
block from 2D search to 1D search. The entire local search
block for Stereo is shown in Fig. 2.

In the main paper we have proved that inverse patch-
match and local search in optical flow not only obtain high-
precision results but also have strong domain-invariance.
In the stereo matching experiments, we follow the train-
ing strategy of DSMNet [17], which is to train only on
the Sceneflow dataset [10], and other real datasets (such as
Kitti [5, 11], Middlebury [12], and ETH3D [13]) are used
to evaluate the cross-domain generalization ability of the
network. Before training, the input images are randomly
cropped to 384 × 768, and the pixel intensity is normalized
to -1 and 1. We train the model on the Sceneflow dataset
for 160K steps with a OneCycle learning rate schedule of
initial learning rate is 0.0004.

Domain-invariance ability The domain-invariance is an
ability that generalizes to unseen data without training. In
Tab. 1, we compare our DIP with other state-of-the-art
deep neural network models on the four unseen real-world

Models
KITTI Middlebury

ETH3D2012 2015 half quarter

CostFilter [8] 21.7 18.9 40.5 17.6 31.1

PatchMatch [2] 20.1 17.2 38.6 16.1 24.1

SGM [7] 7.1 7.6 25.2 10.7 12.9

Training set SceneFlow

HD3 [15] 23.6 26.5 37.9 20.3 54.2

PSMNet [4] 15.1 16.3 25.1 14.2 23.8

Gwcnet [6] 12.5 12.6 34.2 18.1 30.1

GANet [16] 10.1 11.7 20.3 11.2 14.1

DSMNet [17] 6.2 6.5 13.8 8.1 6.2

CFNet [14] 4.7 5.8 21.2 13.1 5.8

Ours-Flow 5.6 5.7 17.2 10.6 5.5
Ours-Stereo 4.9 4.9 14.9 8.8 3.3

Table 1. Comparing with other advanced methods on KITTI, Mid-
dlebury and ETH3D training sets. All methods were trained on
SceneFlow. Errors are the percent of pixels with end-point-error
greater than the specified threshold. We use the standard eval-
uation thresholds: 3px for KITTI, 2px for Middlebury, 1px for
ETH3D.

Figure 2. Local Search block for Stereo.

datasets. All the models are trained on SceneFlow data. On
the KITTI and ETH3D dataset our result far outperforms
the previous methods. In the Middlebury dataset, our re-
sults only lag behind DSMNet better than all the other meth-
ods. Compared to DIP-Flow, DIP-Stereo has more domain-
invariance capability, which indicates that our proposed lo-
cal search block for Stereo is effective in handling Stereo
tasks.

3. Adaptive Layers

Because DIP uses the same process and parameters for
each pyramid, we can define any pyramid layers to make
predictions, instead of using only two layers pyramid as we
trained. Experiments show that when multilayer pyramid
prediction is used, a more accurate optical flow can be ob-



Image Overlay Ground truth Two Layers Adaptive Layers

Figure 3. Results compare between fixed two layers and adaptive layers. The two-level pyramid adopts a strategy from 1/16 to 1/4
resolution. The adaptive way adaptively selects the initial resolution according to the initial optical flow, such as 1/16, 1/8, or 1/4 initial
resolution.

Figure 4. Comparison of results between normal scenes and motion blur scenes. Motion blur causes incorrect optical flow estimation.

tained. Especially for continuous optical flow prediction,
the adaptive pyramid layers can be used to obtain better re-
sults.

DIP supports initializing optical flow input. In the opti-
cal flow prediction of consecutive frames of video, we can
take the forward interpolation of the previous result as the
initialization input of the current frame. If the maximum
displacement of the initialized optical flow is large, the mo-
tion of the current frame may also be large, at which point
we need to start from a low-resolution layer. And to en-
sure accuracy, the sampling rate of the pyramid is 2 instead
of 4. If previous displacement is very small, the motion of
the current frame may also be small, at which point we need
only one layer of pyramid prediction. Fig. 3 shows the com-
parison between the two-layers pyramid and the adaptive
layers pyramid, and both initialize using the “warm-start”
strategy.

4. More Results on High-Resolution
To verify the robustness of optical flow in different high-

resolution real-world scenes, we first tested DIP on the free
used public dataset1 with the resolution of 1080× 1920 and
showed results in Fig. 5. Then, we further used our mo-
bile phone to collect images with a larger resolution(1536×

1https://www.pexels.com/videos/

2048) for testing and showed results in Fig. 6. Experiments
show that even if only virtual data is used for training, DIP
still shows strong detail retention ability in high-resolution
real-world scenes, which further confirms the strong cross-
dataset generalization ability of DIP.

5. Limitations

In the main paper, we observe that DIP is very friendly
to the situations on fine-structure motions in the Sintel [3]
clean dataset (such as the person in the palace). However,
a special weakness of our method is dealing with blurry re-
gions, which is due to the limitations of neighborhood prop-
agation of DIP. The entropy of the propagated information
is greatly reduced when the features of the neighborhood
are blurred, which leads to a weakening of the overall op-
tical flow quality. An incorrect case is shown in Fig. 4. In
the Sintel Clean images, DIP is able to estimate the opti-
cal flow that takes into account details and large displace-
ment. However, in strong motion blur scenes of Sintel Final
data, the propagation of incorrectly matched information in
the neighborhood leads to incorrect predictions. In order to
solve such problems, a non-local attention mechanism will
be introduced in the further works.

https://www.pexels.com/videos/


Image Overlay Optical Flow

Figure 5. High-resolution optical flow results on public real-world images. The test resolution is 1080× 1920



Image1 Optical Flow

Figure 6. High-resolution optical flow results on self-captured images. The test resolution is 1536× 2048
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