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1. Evaluation on Face Editing Tasks.

Here we adopt a recent text-driven face editing frame-

work [13], which uses a pre-trained CLIP for visual-

language reasoning. We replace CLIP with our FaRL (with

equal model size), and show comparisons below. It can be

observed that, the generated face images which are driven

by FaRL are more faithful to the given text prompts.
text prompt: a person with purple hair text prompt: Donald Trump
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Figure 1. Comparing FaRL with CLIP in text-driven face editing.

2. Visualizing the Pre-trained Image Encoder

In Figure 2, we provide the Grad-CAM [20] visualiza-

tions for the pre-trained FaRL image encoder EI , with dif-

ferent text queries fed into the text encoder ET . Gradients

are calculated in the output of the first LayerNorm within

the last Transformer block of EI . As can be seen in the

figure, our image encoder successfully localizes the corre-

sponding regions for different query texts, showing a high

correlation with human attention.

3. Features on Different Backbone Levels

Instead of integrating multi-level features in downstream

tasks, we also study how features on each single level of

EI affect the performances. We replace the multi-level fea-

tures with repeated single feature on each level and apply

the same head for downstream evaluation with backbone

frozen. Figure 3a and Figure 3b illustrate the correspond-

ing performances on LaPa (face parsing) and CelebA (face

*Equal contribution.
²Corresponding author.
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Figure 2. Grad-CAM visualizations of EI given different text

queries. Gradients are calculated in output of the first LayerNorm

within the last Transformer block of EI .

attributes recognition), respectively. In these two figures, a

larger backbone level number indicates a deeper feature.

It is interesting to see that features on different backbone

levels behave in quite divergent ways for different down-

stream tasks. The features on deep levels (e.g level 9) are

the most effective for face attributes recognition on CelebA.

However, they perform poorly on face parsing: the most ef-

fective feature for face parsing is on the 5-th level instead.

This suggests that 1) the encoder EI has learned different

kinds of semantics on different feature levels during pre-

training; 2) different kinds of downstream tasks require dif-

ferent kinds of semantics. Tasks like face attributes recog-

nition rely more on high-level semantics, while face parsing

is more in favor of low-level ones. In consideration of this

divergence, it might not be the best way to always use the

feature from just one single level for all downstream tasks.

Besides, we observe that the fusion of multi-level fea-

tures, which is adopted by FaRL, achieves 92.32 (F1-mean)

on LaPa and 91.39 (mAcc) on CelebA, outperforming all

single-level settings. This indicates a complementary na-

ture among features on different backbone levels.
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(a) LaPa (face parsing).
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(b) CelebA (face attributes recognition).

Figure 3. Performance of features from different backbone levels

on face parsing (LaPa) and face attributes recognition (CelebA).

4. Ratios of Face Images in Pre-training

We are also curious about how the ratio of face images

used in pre-training affects the performances of downstream

face tasks. Therefore, we randomly sample different num-

bers of face images from LAION [19] and construct differ-

ent pre-training datasets for investigation. All these datasets

share the same size with LAION-FACE (20M), but with dif-

ferent ratios of face images within. We conduct pre-training

on these datasets using only image-text contrastive learning.

The corresponding performances of different down-

stream face tasks are illustrated in Table 1. In general, a

higher ratio of face images leads to a better performance.

The gains are significant on tasks like face attributes recog-

nition, but are quite subtle on tasks like face parsing and

face alignment.

Such observation matches our previous hypothesis, that

different downstream tasks require different kinds of se-

mantics. Those high-level facial semantics, which are nec-

essary for face attributes recognition, can only be learned on

face images; while those low-level semantics (e.g. corners,

edges), which are required by face parsing and face align-

ment, can be learned from not only face images, but also

non-face images as well. This also explains why the advan-

tages of our FaRL shown on face parsing and face alignment

over those Transformers pre-trained on general images (e.g.

ImageNet, WIT), are not as large as the advantages exhib-

ited on face attributes recognition.

5. Comparison with Self-supervised Methods

on Face Dataset

Here we compare FaRL with two recent self-supervised

methods: SwAV [2] and SimCLR [3] on LAION-Face with

the same network structure and fine-tuning strategy with

FaRL. Note that SwAV on face images is equivalent to Bu-

lat [1]. as it adopts SwAV for face pre-training. As shown

% of

Face Images

LaPa

F1-mean↑

AFLW-19

NMEdiag ↓

CelebA

mAcc↑

0 91.68 1.017 89.73

12.5 91.68 1.010 90.76

50 91.77 1.009 91.17

100 91.75 1.009 91.31

Table 1. Downstream performances w.r.t different face image ra-

tios in pre-training data. Here the pre-training only uses image-text

contrastive learning.

in Table 2, FaRL achieves better performances on all tasks.

We will add this comparison in the final paper.

Pre-training Settings
LaPa

F1-mean↑

AFLW-19

NMEdiag ↓

CelebA

mAcc↑

(Bulat [1]) SwAV+ALIGN 90.55 1.059 89.65

SimCLR+ALIGN 91.72 0.995 91.08

(FaRL) ITC+MIM1+ALIGN 92.32 0.991 91.39

Table 2. Comparison with self-supervised pre-training on face

data.

6. More Details

Pre-training. During training, mixed-precision was used

to accelerate training and save memory. Gradient check-

pointing and ZeRO [15] are also used for further mem-

ory efficiency. Gradient clip with max norm of 1.0 is ap-

plied to stabilize the training process. Our implementation

of image-text contrastive learning differs from CLIP [14],

which computes contrastive loss using only the local batch

on each GPU, our implementation gathers all logits from all

GPUs and consider all of them in contrastive learning.

Computational Complexity. With the same image en-

coder structure (ViT-B), the computational complexity of

our model is exactly the same with other pre-training meth-

ods during both downstream training and downstream infer-

ence. While during pre-training, our model has an extra text

encoder and an additional MIM stage, leading to a generally

doubled computation complexity comparing with CLIP; but

we share comparable computation complexity with self-

supervised contrastive learning methods (e.g. MoCo v3,

SimCLR).

Face parsing. We adopt augmentations to face parsing

tasks. On LaPa, we first compute a face alignment ma-

trix that aligns five face landmarks retrieved from a face

detector [5] to the landmarks of a mean face in a target res-

olution s ∈ {224, 448}. We then augment on the matrix

with random rotation within [−18◦, 18◦], random rescal-

ing within [0.9, 1.1] and random translation with a range of

0.01× s. We transform both the image and the groundtruth

label maps using the augmented matrix. The transformation

is combined with the Tanh-warping [10] to ensure that the

network can segment the whole face image as well as focus-

ing on the face region. In order to better preserve linearity

within face region, we modify the warping function of [10]



F1 ↑

α Mean Mean (w/o Hair) Hair

0.0 91.51 91.93 87.74

0.2 92.08 92.04 92.52

0.4 92.27 92.07 94.09

0.6 92.31 92.07 94.54

0.8 (default) 92.32 92.08 94.53

1.0 92.11 91.84 94.49

Table 3. F1 scores on LaPa under different warping factors.

from tanh to tanhα defined as tanhα(x) =
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with α being a warping factor: tanhα=1.0 equals to a vanilla

tanh warping, while tanhα→0.0 degenerates to a crop func-

tion that drops all peripheral pixels. Table 3 show results

under different α. α = 0.8 is selected as the default setting.

On CelebAMask-HQ, we replace the face alignment ma-

trix to be a simple rescaling matrix that resizes the original

size to s× s, since all face images in CelebAMask-HQ are

already aligned. We also disable Tanh-warping. The rest

augmentations all remain the same with those on LaPa. All

these above setups are also adopted for all other pre-trained

models for fair comparison.

Face alignment. Augmentations are also applied to face

alignment tasks. Random geometric transformations are

first applied on the bounding boxes provided by the cor-

responding face alignment datasets. These transformations

include random rotation within [−10◦, 10◦], random rescal-

ing within [0.9, 1.1] and random translation with a range of

0.01 × s. The same transformations are imposed on the

groundtruth 2D face landmarks as well. Then, we crop the

original image with the transformed bounding boxes and

rectify the groundtruth landmark coordinates accordingly.

Finally, all these augmented groundtruth landmark points

are rendered to 128 × 128 heatmaps for training, using an

on-line approach. Random Gaussian blur, noise and occlu-

sion are also used on the input images. These setups are also

adopted for all other pre-trained models for fair comparison.

Face attributes recognition. Since our model is pretrained

with aligned face images, it’s important to also train the

downstream task with aligned images. For CelebA dataset,

we use the facial landmarks delivered with the dataset,

for LFWA dataset, we do face detection with RetinaFace

[5]. When training with backbone frozen, we randomly

horizontal-flip the image with a probability of 0.5. When

fully fine-tuning the model, apart from the random horizon-

tal flip, random crop and Gaussian noise, we also apply ran-

dom grayscale with a probability of 0.1, and impose Gaus-

sian noise with a variance of 5 to the facial landmarks used

for aligning the face. These setups are also adopted for all

other pre-trained models for fair comparison.

7. Data Usage

LAION [19]1 contains 400M image-text pairs that are col-

lected from Internet. It is licensed under Creative Common

CC-BY 4.0. They don’t claim copyright of the images.

LaPa [11]2 contains over 22K face images. Its license says

ªthis LaPa Dataset is made freely available to academic and

non-academic entities for non-commercial purposes such

as academic research, teaching, scientific publications, or

personal experimentation. Permission is granted to use the

data given that you agree to our license termsº.

CelebAMask-HQ [9]3 contains 30K face images. The us-

age of the dataset is restricted to non-commercial research

and educational purposes.

AFLW-19 [25]4 contains around 24K face images. It is

revised from the original AFLW dataset [8]5 without any

claims on licensing. The original AFLW dataset is avail-

able for non-commercial research purposes only.

WFLW [22]6 contains images of about 10K faces. It does

not mention any licenses.

300W [16±18]7 contains over 4K face images. The data are

provided for research purposes only. Commercial use (i.e.,

use in training commercial algorithms) is not allowed.

CelebA & LFWA [12]8. CelebA has 202,599 face images

while LFWA has 13,143. The CelebA dataset is available

for non-commercial research purposes only. The LFWA

dataset is based on the original LFW dataset [7]9.

8. Code Usage

ViT [6], DeiT [21]. We use the timm library10 to load these

two pre-trained Transformers. We load the ViT model with

vit base patch16 224 in21k, and load DeiT with

deit base distilled patch16 224. The code of

timm is licensed under Apache 2.0. Please refer to its web-

site for the licensing of its pre-trained weights.

MoCo v3 [4]11. We download its ViT-Base model and use

the provided script to convert the weights to DeiT format,

which is then loaded by the timm library. MoCo v3 is under

the CC-BY-NC 4.0 license.

1https://laion.ai/laion-400-open-dataset/
2https://github.com/JDAI-CV/lapa-dataset
3https://github.com/switchablenorms/CelebAMask-

HQ
4http : / / mmlab . ie . cuhk . edu . hk / projects /

compositional.html
5https://www.tugraz.at/institute/icg/research/

team-bischof/lrs/downloads/aflw/#license
6https://wywu.github.io/projects/LAB/WFLW.html
7https://ibug.doc.ic.ac.uk/resources/300-W/
8https://mmlab.ie.cuhk.edu.hk/projects/CelebA.

html
9http://vis-www.cs.umass.edu/lfw/

10https://github.com/rwightman/pytorch- image-

models
11https://github.com/facebookresearch/moco-v3



BEiT [4]12 is under MIT License. Its BEiT-base is used.

CLIP [14]13 is under MIT license. Its ViT-B/16 is used.

FaceTransformer [24]14 does not contain a license. Its

ViT-P8S8 is used.

RetinaFace [5]15 is used for face detection. It is under the

MIT license.

MMSegmentation16 is under the Apache 2.0 license. We

use its UperNet [23] implementation for downstream tasks

like face parsing and face alignment.
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