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This supplementary document provides additional ablation studies and results in Sec. 1, implementation and training
details in Sec. 2, and discussion on broader impact in Sec. 3. Please also watch the accompanying video to see animated
results and hear an explanation of our proposed method.

1. Additional Ablations and Results
1.1. Comparison with Additional SOTAs

Tab. 1 lists comparisons with additional SOTA methods where code is publicly available. We run the pretrained models
for Zhakarov et al. [17] and Buehler et al. [3] and train HyperNeRF [13] for all four real subjects. Since HyperNeRF is not
3DMM-controllable, we condition the warping and slicing networks on the FLAME expression and pose parameters instead
of a learnable latent code w;.

Method Expression | Ll PSNR1+ SSIM1 LPIPS |
Zhakarov et al. 17.107 0.13929  15.24 0.8900  0.07040
VariTex 3.704 0.09968  17.01 0.9233  0.04890
HyperNeRF 7.201 0.08143 18.94 0.9207  0.03953
Ours 2.548 0.04878  23.91 0.9655  0.02085

Table 1. Additional SOTA baselines. We evaluate SOTA baselines on our real dataset, and provide quantitative comparisons.

1.2. Experiment on MakeHuman Synthetic Dataset [5]

Metric Female 1 Female2 Malel Male?2
1 Mask IoU 0.981 0.983 0.977 0.977
J RGB L1(Intersec) 0.030 0.023 0.018 0.038
1 Normal(Intersec) 0.958 0.958 0.947 0.952
[8] on Normal(Intersec) 0.94 0.95 0.94 0.94

Table 2. MakeHuman. IMavatar is competitive with concurrent work [8] without test-time pose optimization.

We follow Grassal et al. [8] and train with the same frames for 4 subjects from MakeHuman. Tab. 2 lists IoU between
the predicted and GT masks, image L1 over the intersection, and compares geometry with [8]. Our method achieves more
accurate geometry without test-time pose optimization used in [8]. Qualitative results are shown in Fig. 1.

1.3. Ablation on FLAME Pseudo GT Supervision

Our method can also be trained without 3DMM supervision, using only mask and RGB losses (‘Ours-" in Tab. 3 and
Fig. 2). Expression error is higher without pseudo GT supervision (row 1 and 2). However, with TrainData+, which contains



Grassal et al.

Ours Grassal et al. Ours

Figure 1. MakeHuman. IMavatar learns accurate and detailed deformable geometry from monocular RGB videos.

30% more frames and more expression variation than the original trainset, Ours- achieves comparable performance without
leveraging pseudo GT (row 3 and 4).

Method | TrainData+ | Expr. | L; | PSNRT SSIMt LPIPS |

Ours- 3337 0.0496 2232 0.9532  0.0317
Ours 2973  0.0480  22.55 0.9572  0.0292
Ours- X 2955 0.0447 21098 09591  0.0277
Ours X 2.876  0.0457  22.07 0.9596  0.0296

Table 3. Pseudo GT supervision improves metrics given limited data. With TrainData+, it is sufficient to learn unsupervisedly from
images. Scores are calculated on one subject. See Fig. 2 for qualitative results.
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Figure 2. Our method can be trained without FLAME pseudo ground-truth supervision. With more diversed training data, IMavatar learns
more detailed expression and pose deformations. Neck geometry, however, is not guaranteed to be correct due to the lack of movement
and ambiguity between head and neck rotation in the training data.

1.4. Mouth Interior Improvement
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Figure 3. With more diverse data and pre-estimated semantic segmentations, IMavatar can learn better mouth interior geometry and texture.

Simply training on a dataset with more expressions (TrainData+) and setting blendshape supervision in the mouth interior
region to O (with estimated semantic maps) faithfully reproduces teeth (Fig. 3)

1.5. Ablation on Pre-processing: Tracking and Segmentation

We experiment on Female 2 from MakeHuman.



3DMM tracking:. We add uniformly distributed noise to the fitted 3DMM global, neck and jaw poses, with a noise range
from 0.025( 1.4°) to 0.1( 5.7°).

Foreground mask:. We randomly select a 61 x 61 square and set the mask value to True or False randomly. We degrade
10%, 50% and 100% of the masks. For both ablation experiments, the random degradation is a pre-processing step (not
changed during training). See Tab. 4.

Metric 3DMM tracking Baseline Foreground Mask
0.1 0.05 0.025‘ 10%  50%  100%

TMask IoU | 0.927 0.954 0.967 0.983 0982 0.980 0.975
1 Normal 0.905 0.938 0.959 0.958 0.961 0.958 0.932
JRGB L1 0.062 0.045 0.032 0.023 0.024 0.027 0.029

Table 4. Ablation Pre-processing. [IMavatar relies on accurate 3DMM tracking, but it is reasonably robust to mis-segmentations.
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Figure 4. Ablation Pre-processing. Noisy 3DMM tracking is a major reason for blurry texture and geometry. Applying degradation to all
masks leads to visible artifacts.

1.6. Jaw Pose Extrapolation

Fig. 4 in the main paper shows how the performance of baseline methods drops for stronger expressions. We extend this
comparison by plotting the error with respect to the norm of the jaw pose parameter in Fig. 5. Our method achieves low
errors even for strong jaw poses, while the error for baseline methods increases drastically.

1.7. Additional Interpolation Results

We show interpolations and extrapolations as animations in our supplementary video. For each expression, we interpolate
the individual FLAME expression parameter from [-4, 4], and keep all other pose and expression parameters fixed as zero.
We show the smiling (1st), upper lip lifting (2nd), lip side movement (3rd), and eyebrow raising (10th) expressions.
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Figure 5. Jaw pose extrapolation. The x-axis denotes the norm of the jaw pose parameters in radians. The y-axis plots the angular error
of the surface normals (lower is better).Performance of baseline methods worsen drastically as pose become more extreme.
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Figure 6. FLAME morphing v.s. Implicit Morphing.
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Figure 7. Network Architecture. Each block represents a linear layer with its output dimension specified in the inset, followed by a
weight normalization layer [15] and an activation layer. We use Softplus [6] activation for the geometry and deformation network, and
ReLU activation for the texture network. z € R?5% is the latent feature from the geometry network which is used as an input condition for
the texture network.

2. Implementation Details
2.1. Visual Illustration of Mesh Morphing v.s. Implicit Morphing
2.2. Network Architecture

We implement our models in PyTorch [14]. The network architectures for the geometry-, texture-, and deformation-
networks are illustrated in Fig. 7. We initialize the geometry network with geometric initialization [!] to produce a sphere
at the origin. For the deformation network, we initialize the linear blend skinning weights to have uniform weights for all
bones and the expression and pose blendshapes to be zero. For the geometry network, we use positional encoding [12] with
6 frequency components, and condition on a per-frame learnable latent code I € R32.

Fig. 8 shows the modified geometry network for the C-Net, and the deformation network for the D-Net and B-Morph
baselines (see Section 4.2 in the main paper for definitions). We initialize the ablated geometry and deformation networks in
the same way as our method. The displacement output for D-Net is also initialized to be zero.

2.3. Ray Tracing

Our ray tracing algorithm is similar to IDR [16], except that we do not perform the sphere ray tracing with signed distance
values (SDF). This is because SDFs are not guaranteed to be correct in value after non-rigid deformation, and might lead
to over-shooting. For this reason, we also eliminated the Eikonal loss [9] in IDR [16], and reconstruct an occupancy field
instead of an SDF field.
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Figure 8. Network Architecture for Baselines. We show the modified geometry network for C-Net, which is additionally conditioned on
the expression and pose parameters, i) and 6. The deformation network for the B-Morph baseline is conditioned on the deformed point z4
and the expression and pose parameters. For D-Net, the input condition is the same as B-Morph, but the output is the displacement distance
for the deformed location.

2.4. Correspondence Search

Following SNAREF [5], for each deformed point z; we initialize the canonical point x. in multiple locations. More
specifically, we inversely transform x4 with the transformation matrix of the head, jaw, and shoulder to ensure one of the
initialized locations is close enough to the canonical correspondence. Then, we leverage Broyden’s method [2] to find the root
of wy,(z.) = x4 in an iterative manner. We set the maximum number of update steps to 10 and the convergence threshold
to le — 5. In the case of multiple converged canonical correspondences, the occupancy of the deformed point is defined as
the minimum of all occupancy values.

2.5. Training Details

We train our network for 60 epochs with Adam optimizer [10] using a learning rate of n = le~*, and 3 = (0.9, 0.999).
Learning rate is decayed by 0.5 after 40 epochs.

2.6. Real video dataset pre-processing

Our training and testing videos are all captured with one single fixed camera. For training, we record two videos: one
head rotation video to capture the full facial appearance from different angles, and one talking video to capture common and
mild expressions in a speech sequence. For testing, we ask the subjects to perform strong unseen expressions such as a big
smile, jaw opening, pouting, and rising of the eyebrows.

For both training and testing videos, we use DECA [7] to regress the initial FLAME [ 1] shape, expression, and pose
parameters. Unfortunately, the eye poses (gaze directions) are not tracked in our pre-processing pipeline. To refine the
regressed FLAME parameters, we estimate the facial keypoint with [4] and optimize the regressed parameters and global
translation vectors jointly. The primary optimization objective is the keypoint error:

Ekp = HK(97w, ﬂ,t) — Kta’l'getHQ 7

where K (60,1, 3,1) are the predicted 2D keypoints from FLAME pose, expression and shape parameters 6, v, 8 and global
translation ¢, and K*%"9¢ are the optimization targets predicted by [4]. We use one single shape parameter 3 for each subject.
During optimization, we regularize shape and expression by:

A
Breg =2 85+ 5 D2 Ioll3,

T€[0,T)

where 3 and 1) are the shape and expression parameters, 7" is the number of frames, and Az and ), are objective weights, set
to le — 4 and 2e — 4, respectively. We also leverage temporal consistency terms for expression, pose and global translations:

1 M 2 m 2 mj 2
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Etemp =



where 0 and ¢ are the pose parameters and global translation vectors. /\ffmp , Aéemp and /\ﬁemp are set to le — 3, % and 1,—50,
respectively. The final optimization objective can be represented as:

E= Ekp + Ereg + Etemp~

We will release the pre-processing pipeline for real videos.

3. Broader Impact

Our work reconstructs a high fidelity facial avatar from monocular videos, which can extrapolate to unseen expressions
given a training video of only mild deformations. This takes an important step towards democratizing 3D acquisition devices,
as it does not require the user to have access to expensive capture equipment in order to get an animatable 3D model of itself.
Thanks to the extrapolation abilities, it does not impose overly restrictive constraints in terms of the capture process itself,
greatly simplifying it without sacrificing in geometric quality.

There is nevertheless the danger of nefarious use of any technology that can generate plausible renderings of individuals
under fine grained control of expressions and head pose. The foremost danger here is the use of so-called deep-fakes and
dispossession of identity. We are aware of the potential for abuse of our technology — despite its intended use for positive
causes such as connecting people via mixed reality videoconferencing. We argue that performing research on topics such as
this are best performed in an open and transparent way, including full disclosure of the algorithmic details, data and models
which we intend to release for research purposes. While we may, unfortunately, not be able to prevent the development of
deep-fake technologies entirely, we may however inform the general understanding of the underlying technologies and we
hope that our paper will therefore also be useful to inform counter-measures to nefarious uses.
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