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Figure 1. Detailed architecture of Expression Mini-Nets block.

A. Detailed Network Architecture

The detailed architectures of Expression Mini-Nets,

Identity Mini-Nets, and Template Mini-Nets are shown in

Fig. 1, Fig. 3 and Fig. 4 respectively, where Ns refers to the

number of total scans, Nid denotes the number of identities,

and PE indicates positional encoding.

All the networks are fully implemented by MLPs. To

achieve better performance for high-frequency clues, we

encode the relative coordinates with respect to k landmarks

by sinusoidal positional encoding γ [6], written as γ(p) =
(sin(20πp), cos(20πp), · · · , sin(2L−1πp), cos(2L−1πp)),
where L = 6, k = 5 in our experiments. Besides, sine

activations are exploited in every Mini-Net ψn and the

parameters are initialized as in [9]. During training, the pa-

rameters of k Mini-Nets are generated by k corresponding

Hyper Nets for a more expressive latent space, which is a

common technical operation in recent INRs studies [2, 8].

The trade-off parameters λ1, · · · , λ7 to train the net-

works are set to 3e3, 1e2, 5e1, 1e6, 1e2, 1e2, and 1e2 re-

spectively.

B. Preprocessing

To enable INRs to work with non-watertight 3D faces,

we present an effective preprocessing pipeline as briefly de-

scribed in Sec. 3.5, so that facial geometry and correspon-

dence can be learned as exquisitely as on watertight objects.

Remove Hidden 

Surfaces

Original Face Data
Signed Distance Samples

Figure 2. Illustration of the preprocessing pipeline.

We first determine the domain of definition {(x, y, z) ∈
R

3} of our implicit function f : R3 7→ R. Specifically, the

coordinate origin is set at the point 4 cm behind the nose

tip. This setting helps to balance the number of positive and

negative SDF samples, which is crucial to facilitate INRs

network convergence. To cover most of facial geometries

while cut away unnecessary regions, a sphere S with a ra-

dius of 10 cm centered on the coordinate origin is defined

as the sampling area. However, it is not an intuitive task to

determine whether a point in S is “inside” or “outside” of

a 3D facial surface, mainly because facial surface may con-

tain multiple openings such as the mouth and eyes, as well

as complex geometric structures in the nasal or oral cavity,
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Figure 3. Detailed architecture of Identity Mini-Nets block. It additionally predicts a correction term to cope with possible non-existent

correspondences.
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Figure 4. Detailed architecture of Template Mini-Nets block. It does not require a conditional embedding since the template face is shared

across all faces.

depending on the acquisition conditions. The proposed pre-

processing pipeline aims to address the issue above.

Our key observation is that, if a 3D surfaceC satisfies the

following property, it can be oriented easily. Without loss

of generality, we consider an infinite continuous surface C

defined in 3D space Ω : {(x, y, z) ∈ R
3}.

Definition 1. Assuming C is defined by an implicit function

f(x, y, z) = 0, if z is an injective function of (x, y), we call

C is injective at z.

Property 1. If C is injective at z, Ω is divided into two and

only two spaces Ω1, Ω2, that for any (x, y, z) ∈ Ω1, a ray

from (x, y, z) along the positive z-axis intersects with C for

only once, and for any (x, y, z) ∈ Ω2 it does not intersect

with C.

Proof. It is equivalent to prove that for any (x, y, z) ∈ Ω,

the ray starting from it along the positive z-axis cannot in-

tersect with C at more than one point. By reductio, if a ray

l from (x0, y0, z0) ∈ Ω intersects with C at multiple dif-

ferent points {(x1, y1, z1), · · · , (xn, yn, zn)}(n ≥ 2), we

have (x1, y1)= · · ·=(xn, yn)= (x0, y0) but z1 ̸= · · · ≠ zn,

which conflicts with the injective precondition of z.

Based on the property above, we acknowledge that if a

facial surface satisfies the property in Definition 1, then two

separate 3D regions can be clearly determined and the in-

side and outside space can be set manually, so that SDF can

be further defined. In general, human faces are approxi-

mately injective at the frontal direction. To make it strictly

satisfy Property 1, for any face mesh (V, F ) we generate

new triangles F ′ by performing the Delaunay Triangula-

tion Algorithm [3] on x-y coordinate and construct a new



(a) Expression Componets (b) Identity Componets

Figure 5. Visualization of the expression and identity principal components of ImFace on FaceScape [11].

mesh (V, F ′), thus any straight line parallel to z-axis only

intersects with one triangle in F ′. It holds because a Tri-

angulation Algorithm covers the convex hull and does not

lead to overlaps between 2D triangles, which makes any x-y

coordinate have a unique triangle corresponding to it.

Considering that directly performing 2D triangulation

makes the points on hidden surfaces (e.g. the inner surface

of nasal cavity) interlace with the ones on frontal surface,

leading to unreasonable triangles, the Ray-Triangle Inter-

section Algorithm [7] is thus iteratively executed to remove

the hidden surfaces before triangulation. Specifically, a ver-

tex is marked if a ray from it along the positive z-axis in-

tersects with more than one triangle in F , and the triangles

in F which have marked vertices are removed. In this way,

a pseudo watertight face mesh can be established without

much loss of accuracy, which divides the sampling space

into two separate parts clearly.

Given a preprocessed face mesh, the sign of any query

point in the sampling sphere can be determined by whether

a ray from it to positive z-axis intersects with the face mesh,

as in Property 1. In order to accelerate the calculation pro-

cedure, we make use of the distance vectors calculated via

distance transform and determine the sign of a query point

by the angle between its distance vector to the nearest sur-

face and the positive direction of z-axis , which is equivalent

to the above-mentioned ray intersection checks. The whole

preprocessing pipeline is presented in Fig. 2.

(a) (b)

Figure 6. Visualizing the distributions of high-dimensional ex-

pression and identity embeddings with t-SNE. (a) the embedding

distribution of 6 typical expressions from the training set. (b) the

identity embedding distribution from the test set.

C. Experiments

To have a better insight into the proposed ImFace mor-

phable model, we provide more evaluation results in this

supplementary material.

C.1. Face Variation Visualization

We apply Principal Components Analysis (PCA) on the

learned expression and identity embeddings to visualize

model variations, as shown in Fig. 5. The standard devi-

ations in terms of expression and identity are set to ±3 and

±30 respectively. In particular, four expression principal



(a) Expression Componets (b) Identity Componets

Figure 7. Visualization of the expression and identity principal components on BU-3DFE [13].

Figure 8. Cross-dataset reconstruction (trained on FaceScape,

tested on BU-3DFE).

components are visualized in Fig. 5 (a). Despite great ex-

pression changes, the faces maintain a consistent identity.

Besides, by learning expression components from thou-

sands of unique embeddings, vivid expressions can be pro-

duced by ImFace. In Fig. 5 (b), we can observe a similar

phenomenon on the learned identity components that the

facial expressions remain stable when identity varies. The

experimental results indicate that a good distanglement be-

tween expression and identity is achieved, which is crucial

to generating novel faces by reweighting the singular val-

ues.

C.2. Highdimensional Embedding Visualization

To validate this point, we visualize the learned high-

dimensional expression embeddings from 2,130 training

scans with 6 typical expressions by t-SNE [10], as Fig. 6 (a)

shows. It can be seen that our network is capable of unsu-

pervisedly distinguishing different expression types only by

learning from expression-related shape morphs, which in-

dicates its superior ability in expression modeling. Further-

more, we visualize the identity embeddings from the test

set in Fig. 6 (b), which involves 200 face scans from 10 per-

sons. Visually inspected, our model successfully captures

different identity features even under various complicated

expressions.

C.3. More Results on FaceScape

In Fig. 9 and Fig. 10, we present more comparison with

i3DMM [12], FLAME [5], FaceScape [11], and ground-

truth faces, where a common color-coded distance (fit-to-

scan) is used to indicate the reconstruction errors. As can

be seen, faces are reconstructed more accurately by ImFace

than the counterparts.

C.4. Results on BU3DFE

We additionally preprocess the BU-3DFE [13] database

and train ImFace on it. Fig. 7 displays the expression and

identity principal components achieved on BU-3DFE. As

can be seen, although this dataset contains some pose varia-

tions, ImFace still captures facial geometry faithfully, which

validates its generality. Further, we give cross-dataset re-

sults in Fig. 8, which shows that our model well generalizes

to another dataset.



C.5. Applications

ImFace is a general face representation established upon

prior distributions of facial expression and identity morphs,

and it can thus be applied to various down-stream appli-

cations. In Fig. 11, we provide expression editing results

achieved on the FaceScape test set. The faces in the first

row are the real ones providing source identities with neu-

tral expressions, while the rest are generated by the pro-

posed model. Our model is able to edit facial expression by

simply changing their expression embeddings. The vivid

3D faces generated clearly validate the powerful represen-

tation ability of ImFace.

D. Visualization Techniques

We use Marching Cubes [4] to reconstruct facial surfaces

from the signed distance field, where the voxel resolution is

set to 2563. All the meshes are rendered by Pyrender [1].
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0 mm > 4 mm

i3DMM FLAME FaceScape ImFace (Ours) GT

Figure 9. More comparison with i3DMM [12], FLAME [5], FaceScape [11], and ground-truth faces.
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i3DMM FLAME FaceScape ImFace (Ours) GT

Figure 10. More comparison with i3DMM [12], FLAME [5], FaceScape [11], and ground-truth faces.



Figure 11. Expression editing results on the test set. The faces in the first row provide source identities, while the rest are generated by the

proposed model. Our model is able to edit facial expression by exchanging embeddings.
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