
Supplementary Material for Neural Architecture Search with Representation
Mutual Information

1. The proof of Theorem 1

Theorem 1. Assuming that P (α) obeys the uniform dis-
tribution on the domain of definition for an arbitrary black
box function f(α). For a specific threshold τ , it holds that

argmax
α

f (α) = argmax
α

P (α|f (α) + σϵ > τ) , (1)

where σ > 0, ϵ ∼ N (0, 1).

Proof. Let y denote the observation with additive Gaussian
noise, i.e.,, y = f(α) + σϵ, where σ > 0, ϵ ∼ N (0, 1).
Then

f(α) = E[y|α] =

∫ ∞

−∞
y · p(y|α)dy.

We first define I(α) := max(y − τ, 0), so we can derive
the Expected Improvement (EI) [14, 20] in the form of goal
maximization as follows:

EI(α) = Ey∼N (f(x),σ2)[I(x)] = Eϵ∼N (0,1)[I(x)]

EI(α) =

∫ ∞

−∞
I(x)ϕ(ϵ)dϵ

EI(α) =

∫ ∞

(τ−f)/σ

(f − τ + σϵ)ϕ(ϵ)dϵ

EI(α) = (f − τ)Φ

(
f − τ

σ

)
+ σ

∫ ∞

(τ−f)/σ

ϵϕ(ϵ)dϵ

EI(α) = (f − τ)Φ

(
f − τ

σ

)
− σ√

2π

∫ ∞

(τ−f)/σ

(−ϵ)e−ϵ2/2dϵ

EI(α) = (f − τ)Φ

(
f − τ

σ

)
− σ√

2π
e−ϵ2/2

∣∣∣∣∞
(τ−f)/σ

EI(α) = (f − τ)Φ

(
f − τ

σ

)
− σ

(
0− ϕ

(
τ − f

σ

))
EI(α) = (f − τ)Φ

(
f − τ

σ

)
+ σϕ

(
f − τ

σ

)
,

where Φ and ϕ are the CDF and PDF of the standard nor-
mal distribution, respectively. Since σ is a constant, we can
obtain the monotonic [9] increase of EI with respect to f ,

by calculating the derivative:

dEI

df
= Φ

(
f − τ

σ

)
+ σ−1(f − τ)ϕ

(
f − τ

σ

)
+ ϕ′

(
f − τ

σ

)
= Φ

(
f − τ

σ

)
> 0.

With this monotonicity, we have

argmax
α

f(α) = argmax
α

EI(α). (2)

And then, we use some conclusions from Louis et al. [22].
For completeness, we reproduce the derivations.

EI(α) =

∫ ∞

−∞
max(y − τ, 0)P (y | α) dy

=

∫ ∞

τ

(y − τ)P (y | α) dy +

∫ τ

−∞
0 · P (y | α) dy

=
1

P (α)

∫ ∞

τ

(y − τ)P (α | y)P (y) dy.

(3)
We use Bayes’ rule for the denominator part:

P (α) =

∫ ∞

−∞
P (α | y)P (y) dy

= ℓ(α)

∫ τ

−∞
P (y) dy + g(α)

∫ ∞

τ

P (y) dy

= γg(α) + (1− γ)ℓ(α),

(4)

where γ = Φ(τ) := p(y > τ), ℓ(x) := P (x|y ≤ τ), and
g(x) := P (x|y > τ). While for the molecular part:∫ ∞

τ

(y − τ)P (α | y) p (y) dy

= g(α)

∫ ∞

τ

(y − τ)P (y) dy

= g(α)

∫ ∞

τ

yp (y) dy − g(α)τ

∫ ∞

τ

P (y) dy

= g(α)

∫ ∞

τ

yP (y) dy − γτg(α)

= K · g(α),
(5)
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Figure 1. CIFAR-10 [15] test errors of different architectures with their corresponding RMI losses to the teacher network. (a) Selecting
a well-performing architecture in NAS-Bench-201 [10] as the teacher network. (b) Selecting ResNet-20 [12] as the teacher network. (c)
Selecting ResNet-20 as the teacher network while training for only 20 epochs.

Method Search Cost ImageNet Test Err. (%) Search
(GPU-days) top1 top5 Method

MobileNet [13] - 29.4 10.5 Manual
ShuffleNet 2x (v1) [25] - 26.4 10.2 Manual
ShuffleNet 2x (v2) [19] - 25.1 - Manual

AmoebaNet-C [21] 3150 24.3 7.6 Evolution
NASNet-A [27] 1800 26 8.4 RL

PNAS [17] 225 25.8 8.1 SMBO
BayesNAS [26] 0.2 26.5 8.9 Gradient

ProxylessNAS (ImageNet) [1] 8.3 24.9 7.5 Gradient
PC-DARTS [24] 0.1 25.1 7.8 Gradient

PC-DARTS (ImageNet) [24] 3.8 24.2 7.3 Gradient
GDAS [11] 0.21 26.0 8.5 Gradient

DARTS (2nd) [18] 4.0 26.7 8.7 Gradient
SNAS (mild) [23] 1.5 27.3 9.2 Gradient

P-DARTS [5] 0.3 24.4 7.4 Gradient
P-DARTS (CIFAR100) [5] 0.3 24.7 7.5 Gradient

PARSEC [2] 1 26.0 8.4 Gradient
DARTS- (ImageNet) [6] 4.5 23.8 7.0 Gradient

SDARTS-ADV [4] 1.3 25.2 7.8 Gradient
SGAS [16] 0.25 24.2 7.2 Gradient
TE-NAS [3] 0.05 26.2 8.3 Gradient

TE-NAS (ImageNet) [3] 0.17 24.5 7.5 Gradient
FairDARTS-B [7] 0.4 24.9 7.5 Gradient

Ours 0.08 24.7 7.6 Random Forest

Table 1. Classification accuracy and average search cost for RMI-NAS and other NAS algorithms on DARTS [18] search space and
ImageNet [8] dataset.

where K =
∫∞
τ

yp (y) dy−γτ. Combining Eq. (3), (4) and
(5):

EI(α) ∝ g(α)

γg(α) + (1− γ)ℓ(α)
, (6)

then by the definition of ℓ, g and γ, we simplify the above

formula as follows:
g(α)

γg(α) + (1− γ)ℓ(α)

=
P (α | y > τ)

γ · P (α | y > τ) + (1− γ) · P (α | y ≤ τ)

=

P (y>τ |α)P (α)
P (y>τ)

γ · P (y>τ |α)P (α)
P (y>τ) + (1− γ) · P (y≤τ |α)p(α)

P (y≤τ)

=
P (y > τ | α)

γ
.

(7)



Note that P (α) follows the uniform distribution, and using
Bayes’ theorem, we have

P (y > τ | α) =
P (y > τ) · P (α|y > τ)

P (α)

∝ P (α|y > τ).

(8)

Finally combining Eq. (2), (6), (7) and (8), we obtain

argmax
α

f(α) = argmax
α

EI(α)

= argmax
α

g(α)

γg(α) + (1− γ)ℓ(α)

= argmax
α

P (y > τ | α)

γ

= argmax
α

P (α|y > τ).

(9)

2. Results on ImageNet
ImageNet [8] is a widely-used dataset in Computer vi-

sion tasks. In this work, we follow the prior art methods’
settings to perform our results, comparing performance un-
der the mobile setting of ImageNet. For purpose both on
verifying our searched architecture’s capability and as a
general approach, we transfer our searched architecture in
CIFAR-10 [15] to Imagenet. From the results in Tab. 1,
RMI-NAS shows comparable test accuracy but marginal ef-
ficiency improvement among all methods.

Notably, the architecture we search for has the same nor-
mal cells and reduction cells, but still has performance com-
parable to other methods. This can be further improved as
this setting restricts the architecture performance, and we
will search for different cells in the next version to gain bet-
ter accuracy.

3. Robustness of RMI
In this section, we compare and analyze some experi-

ments that are used to verify the usability and robustness of
the proposed RMI approach.

We first present an overview of all available architec-
tures in the NAS-Bench-201 [10] search space using RMI
in Fig. 2. Generally, it demonstrates positive correlation
between RMI and accuracy over the full space. Since
we aim to find an optimal architecture, we need to focus
more on architectures with better performance. Our method
shows higher correlation in best-performing architectures,
distributing more densely at the top 5%.

Furthermore, considering that there may be significant
differences between good and bad architectures, the sam-
pling method should reflect as much variability as possible.
Due to the low percentage of well-performing architectures
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Figure 2. Correlation between RMI loss ranking and accuracy
ranking of architectures in NAS-Bench-201 [10]. The red line
refers to the top 5% RMI score, where our method shows high
correlation in best-performing architectures and distributes more
densely.

in the whole space, uniform sampling can better distinguish
between networks with different performance.

In practice, we uniformly sample architectures by accu-
racy from the NAS-Bench-201 search space, and choose
different well-performing ones as the teacher network to
calculate RMI. As shown in Fig. 1(a), our method owns
high correlation when selecting a well-performing architec-
ture in the same search space. The same results are obtained
when using ResNet-20 [12] as the teacher model, referring
to Fig. 1(b). This highlights the robustness of proposed RMI
method when applied to different teacher networks.

We further test our method when sampled architectures
are trained for only 20 epochs, and the observation in
Fig. 1(c) demonstrates that even when not fully trained, our
method still shows great correlation of architectures’ accu-
racy and their corresponding RMI loss. This result further
highlights that when with an accurate indicator, it is possi-
ble to distinguish between architectures with different per-
formance by training for a small number of epochs.
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