
Supplementary Material for Neural Architecture Search with Representation
Mutual Information

1. The proof of Theorem 1

Theorem 1. Assuming that P (α) obeys the uniform dis-
tribution on the domain of definition for an arbitrary black
box function f(α). For a specific threshold τ , it holds that

argmax
α

f (α) = argmax
α

P (α|f (α) + σϵ > τ) , (1)

where σ > 0, ϵ ∼ N (0, 1).

Proof. Let y denote the observation with additive Gaussian
noise, i.e.,, y = f(α) + σϵ, where σ > 0, ϵ ∼ N (0, 1).
Then

f(α) = E[y|α] =

∫ ∞

−∞
y · p(y|α)dy.

We first define I(α) := max(y − τ, 0), so we can derive
the Expected Improvement (EI) [14, 20] in the form of goal
maximization as follows:

EI(α) = Ey∼N (f(x),σ2)[I(x)] = Eϵ∼N (0,1)[I(x)]

EI(α) =

∫ ∞

−∞
I(x)ϕ(ϵ)dϵ

EI(α) =

∫ ∞

(τ−f)/σ

(f − τ + σϵ)ϕ(ϵ)dϵ

EI(α) = (f − τ)Φ

(
f − τ

σ

)
+ σ

∫ ∞

(τ−f)/σ

ϵϕ(ϵ)dϵ

EI(α) = (f − τ)Φ

(
f − τ

σ

)
− σ√

2π

∫ ∞

(τ−f)/σ

(−ϵ)e−ϵ2/2dϵ

EI(α) = (f − τ)Φ

(
f − τ

σ

)
− σ√

2π
e−ϵ2/2

∣∣∣∣∞
(τ−f)/σ

EI(α) = (f − τ)Φ

(
f − τ

σ

)
− σ

(
0− ϕ

(
τ − f

σ

))
EI(α) = (f − τ)Φ

(
f − τ

σ

)
+ σϕ

(
f − τ

σ

)
,

where Φ and ϕ are the CDF and PDF of the standard nor-
mal distribution, respectively. Since σ is a constant, we can
obtain the monotonic [9] increase of EI with respect to f ,

by calculating the derivative:

dEI

df
= Φ

(
f − τ

σ

)
+ σ−1(f − τ)ϕ

(
f − τ

σ

)
+ ϕ′

(
f − τ

σ

)
= Φ

(
f − τ

σ

)
> 0.

With this monotonicity, we have

argmax
α

f(α) = argmax
α

EI(α). (2)

And then, we use some conclusions from Louis et al. [22].
For completeness, we reproduce the derivations.

EI(α) =

∫ ∞

−∞
max(y − τ, 0)P (y | α) dy

=

∫ ∞

τ

(y − τ)P (y | α) dy +

∫ τ

−∞
0 · P (y | α) dy

=
1

P (α)

∫ ∞

τ

(y − τ)P (α | y)P (y) dy.

(3)
We use Bayes’ rule for the denominator part:

P (α) =

∫ ∞

−∞
P (α | y)P (y) dy

= ℓ(α)

∫ τ

−∞
P (y) dy + g(α)

∫ ∞

τ

P (y) dy

= γg(α) + (1− γ)ℓ(α),

(4)

where γ = Φ(τ) := p(y > τ), ℓ(x) := P (x|y ≤ τ), and
g(x) := P (x|y > τ). While for the molecular part:∫ ∞

τ

(y − τ)P (α | y) p (y) dy

= g(α)

∫ ∞

τ

(y − τ)P (y) dy

= g(α)

∫ ∞

τ

yp (y) dy − g(α)τ

∫ ∞

τ

P (y) dy

= g(α)

∫ ∞

τ

yP (y) dy − γτg(α)

= K · g(α),
(5)

1

10 20 30 40 50
CIFAR-10 Test Error (%)

0.2

0.4

0.6

0.8

1.0

1.2

1.4
R

M
I L

os
s

10 20 30 40 50
CIFAR-10 Test Error (%)

0.2

0.4

0.6

0.8

1.0

R
M

I L
os

s

10 20 30 40 50
CIFAR-10 Test Error (%)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
M

I L
os

s

Figure 1. CIFAR-10 [15] test errors of different architectures with their corresponding RMI losses to the teacher network. (a) Selecting
a well-performing architecture in NAS-Bench-201 [10] as the teacher network. (b) Selecting ResNet-20 [12] as the teacher network. (c)
Selecting ResNet-20 as the teacher network while training for only 20 epochs.

Method Search Cost ImageNet Test Err. (%) Search
(GPU-days) top1 top5 Method

MobileNet [13] - 29.4 10.5 Manual
ShuffleNet 2x (v1) [25] - 26.4 10.2 Manual
ShuffleNet 2x (v2) [19] - 25.1 - Manual

AmoebaNet-C [21] 3150 24.3 7.6 Evolution
NASNet-A [27] 1800 26 8.4 RL

PNAS [17] 225 25.8 8.1 SMBO
BayesNAS [26] 0.2 26.5 8.9 Gradient

ProxylessNAS (ImageNet) [1] 8.3 24.9 7.5 Gradient
PC-DARTS [24] 0.1 25.1 7.8 Gradient

PC-DARTS (ImageNet) [24] 3.8 24.2 7.3 Gradient
GDAS [11] 0.21 26.0 8.5 Gradient

DARTS (2nd) [18] 4.0 26.7 8.7 Gradient
SNAS (mild) [23] 1.5 27.3 9.2 Gradient

P-DARTS [5] 0.3 24.4 7.4 Gradient
P-DARTS (CIFAR100) [5] 0.3 24.7 7.5 Gradient

PARSEC [2] 1 26.0 8.4 Gradient
DARTS- (ImageNet) [6] 4.5 23.8 7.0 Gradient

SDARTS-ADV [4] 1.3 25.2 7.8 Gradient
SGAS [16] 0.25 24.2 7.2 Gradient
TE-NAS [3] 0.05 26.2 8.3 Gradient

TE-NAS (ImageNet) [3] 0.17 24.5 7.5 Gradient
FairDARTS-B [7] 0.4 24.9 7.5 Gradient

Ours 0.08 24.7 7.6 Random Forest

Table 1. Classification accuracy and average search cost for RMI-NAS and other NAS algorithms on DARTS [18] search space and
ImageNet [8] dataset.

where K =
∫∞
τ

yp (y) dy−γτ. Combining Eq. (3), (4) and
(5):

EI(α) ∝ g(α)

γg(α) + (1− γ)ℓ(α)
, (6)

then by the definition of ℓ, g and γ, we simplify the above

formula as follows:
g(α)

γg(α) + (1− γ)ℓ(α)

=
P (α | y > τ)

γ · P (α | y > τ) + (1− γ) · P (α | y ≤ τ)

=

P (y>τ |α)P (α)
P (y>τ)

γ · P (y>τ |α)P (α)
P (y>τ) + (1− γ) · P (y≤τ |α)p(α)

P (y≤τ)

=
P (y > τ | α)

γ
.

(7)

Note that P (α) follows the uniform distribution, and using
Bayes’ theorem, we have

P (y > τ | α) =
P (y > τ) · P (α|y > τ)

P (α)

∝ P (α|y > τ).

(8)

Finally combining Eq. (2), (6), (7) and (8), we obtain

argmax
α

f(α) = argmax
α

EI(α)

= argmax
α

g(α)

γg(α) + (1− γ)ℓ(α)

= argmax
α

P (y > τ | α)

γ

= argmax
α

P (α|y > τ).

(9)

2. Results on ImageNet
ImageNet [8] is a widely-used dataset in Computer vi-

sion tasks. In this work, we follow the prior art methods’
settings to perform our results, comparing performance un-
der the mobile setting of ImageNet. For purpose both on
verifying our searched architecture’s capability and as a
general approach, we transfer our searched architecture in
CIFAR-10 [15] to Imagenet. From the results in Tab. 1,
RMI-NAS shows comparable test accuracy but marginal ef-
ficiency improvement among all methods.

Notably, the architecture we search for has the same nor-
mal cells and reduction cells, but still has performance com-
parable to other methods. This can be further improved as
this setting restricts the architecture performance, and we
will search for different cells in the next version to gain bet-
ter accuracy.

3. Robustness of RMI
In this section, we compare and analyze some experi-

ments that are used to verify the usability and robustness of
the proposed RMI approach.

We first present an overview of all available architec-
tures in the NAS-Bench-201 [10] search space using RMI
in Fig. 2. Generally, it demonstrates positive correlation
between RMI and accuracy over the full space. Since
we aim to find an optimal architecture, we need to focus
more on architectures with better performance. Our method
shows higher correlation in best-performing architectures,
distributing more densely at the top 5%.

Furthermore, considering that there may be significant
differences between good and bad architectures, the sam-
pling method should reflect as much variability as possible.
Due to the low percentage of well-performing architectures

0 2000 4000 6000 8000
Accuracy Rank

0

2000

4000

6000

8000

R
M
I
 R

an
k

Figure 2. Correlation between RMI loss ranking and accuracy
ranking of architectures in NAS-Bench-201 [10]. The red line
refers to the top 5% RMI score, where our method shows high
correlation in best-performing architectures and distributes more
densely.

in the whole space, uniform sampling can better distinguish
between networks with different performance.

In practice, we uniformly sample architectures by accu-
racy from the NAS-Bench-201 search space, and choose
different well-performing ones as the teacher network to
calculate RMI. As shown in Fig. 1(a), our method owns
high correlation when selecting a well-performing architec-
ture in the same search space. The same results are obtained
when using ResNet-20 [12] as the teacher model, referring
to Fig. 1(b). This highlights the robustness of proposed RMI
method when applied to different teacher networks.

We further test our method when sampled architectures
are trained for only 20 epochs, and the observation in
Fig. 1(c) demonstrates that even when not fully trained, our
method still shows great correlation of architectures’ accu-
racy and their corresponding RMI loss. This result further
highlights that when with an accurate indicator, it is possi-
ble to distinguish between architectures with different per-
formance by training for a small number of epochs.

References
[1] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. ICLR,
2019. 2

[2] Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi.
Probabilistic neural architecture search. arXiv, 2019. 2

[3] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural
architecture search on imagenet in four gpu hours: A theo-
retically inspired perspective. In ICLR, 2020. 2

[4] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differen-
tiable architecture search via perturbation-based regulariza-
tion. In ICML, pages 1554–1565. PMLR, 2020. 2

[5] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-
ferentiable architecture search: Bridging the depth gap be-
tween search and evaluation. arXiv, 2019. 2

[6] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xi-
aolin Wei, and Junchi Yan. Darts-: robustly stepping out of
performance collapse without indicators. arXiv, 2020. 2

[7] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li.
Fair darts: Eliminating unfair advantages in differentiable ar-
chitecture search. In ECCV, pages 465–480. Springer, 2020.
2

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255. Ieee, 2009. 2, 3

[9] R Jones Donald. Efficient global optimization of expensive
black-box function. J. Global Optim., 13:455–492, 1998. 1

[10] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In Inter-
national Conference on Learning Representations, 2019. 2,
3

[11] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four gpu hours. In CVPR, 2019. 2

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2, 3

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv,
2017. 2

[14] Donald R Jones, Matthias Schonlau, and William J Welch.
Efficient global optimization of expensive black-box func-
tions. Journal of Global optimization, 13(4):455–492, 1998.
1

[15] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, 2009.
2, 3

[16] Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias
Muller, Ali Thabet, and Bernard Ghanem. Sgas: Sequen-
tial greedy architecture search. In CVPR, pages 1620–1630,
2020. 2

[17] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In ECCV, 2018. 2

[18] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In ICLR, 2019. 2

[19] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In ECCV, 2018. 2

[20] Chao Qin, Diego Klabjan, and Daniel Russo. Improving the
expected improvement algorithm. arXiv, 2017. 1

[21] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. arXiv, 2018. 2

[22] Louis C Tiao, Aaron Klein, Matthias Seeger, Edwin V
Bonilla, Cedric Archambeau, and Fabio Ramos. Bore:
Bayesian optimization by density-ratio estimation. arXiv,
2021. 1

[23] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:
Stochastic neural architecture search. arXiv, 2018. 2

[24] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel
connections for memory-efficient differentiable architecture
search. arXiv, 2019. 2

[25] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In CVPR, 2018. 2

[26] Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan.
Bayesnas: A bayesian approach for neural architecture
search. In ICML, pages 7603–7613. PMLR, 2019. 2

[27] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, 2018. 2

