
Supplemental Material for
Structured Local Radiance Fields for Human Avatar Modeling

A. Overview

This supplementary document provides more discus-
sions and experimental details. In Sec. B, we discuss in
detail the differences between our method and state-of-the-
art approaches. Details about network architecture are pre-
sented in Sec. C. In Sec. D we present more details about
how we collect the data and how we conduct the experi-
ments. We conduct additional experiments in Sec. E to fur-
ther evaluate our method design. Finally, we discuss the
limitations and potential future work in Sec. F. Please refer
to the supplementary video for more visualizations.

B. More Discussion

Our method aims at creating a controllable 3D human
character from RGB videos without pre-scanning a subject-
specitic template. To better motivate our method and dif-
ferentiate from existing approaches, we list the most related
works below and discuss their limitations as well as our so-
lution in this section.

Neural Body [9] attaches learnable latent codes to the
vertices of SMPL model, and employs sparse 3D convolu-
tions to diffuse the latent codes into a radiance field in the
3D space. This scheme shows impressive performance on
novel view synthesis for human performance. However, it
struggles with new pose syntheses, as shown in [8]. The
main reason for this limitation is that 3D convolution is not
equivalent to spatial changes of the structured latent code.
In our method, we avoid the need for 3D convolutions and
construct the radiance field by combining a set of localized
ones, thus easily enable avatar animation by design.

Animatable NeRF [8] factorizes a deforming human
body into a canonical radiance field and per-frame deforma-
tion fields that establish correspondences between the ob-
servations and the canonical space. The deformation field
is generated through diffusing the input skeleton motion
into the 3D space based on the learnable blending weights.
Thanks to the explicit disentanglement of shape and mo-
tion, Animatable NeRF [8] is able to synthesize images
for unseen poses. However, the motion representation is
too simple to model the complex non-rigid deformations
of clothes, which results into unrealistic, static texture and
even severe artifacts when applying this method on loose

clothes. In contrast, our method explicitly takes into ac-
count the non-rigid cloth deformation via coarse-to-fine de-
composition, and demonstrates plausible animation results
for human characters wearing dresses.

Neural Actor [5] shares a similar scheme with Animat-
able NeRF [8]: it also learns a neural radiance field in a
canonical body pose, and use LBS to warp the canonical ra-
diance field to represent the moving subject. Its main inno-
vations are two fold: 1) Neural Actor learns pose-dependent
non-rigid deformation that cannot be captured by standard
skinning using a residual function, and 2) Neural Actor en-
codes appearance features on the 2D texture maps of the
SMPL model to better capture dynamic details. Although
this scheme shows impressive results in modeling the pose-
dependent appearance details like the cloth wrinkles, it only
works well for clothing that is topologically similar to the
body. Besides, Neural Actor [5] requires multi-view input
in order to obtain a complete texture map for network train-
ing. Note that we also use SMPL model in our approach;
but we do not explicitly depend on the SMPL topology
for shape and appearance representation. Therefore, our
method is more general than Neural Actor [5] in terms of
the cloth topology, and can work with partial input such as
a monocular video.

DDC [2] is another state-of-the-art method for building
animatable avatars. It demonstrates impressive results for
loose clothes and even achieves real-time rendering perfor-
mance. However, DDC requires a pre-scanned template
model of the actor; that is why we do not compare with
it since person-specific templates are not available in our
experiment setting. In contrast, our method can model the
dynamic shape and appearance of general garments without
any pre-scanning efforts.

Some methods like TNR [11] and ANR [10] learn an-
imatable avatars in 2D domain. They typically define ap-
pearance features (RGB color values or high-dimensional
features) on the UV map of a body template, and exploit
a 2D convolutional network to obtain the final color im-
age. These methods not only suffer from the same limi-
tation as [5, 8], but also fail to guarantee view consistency
when rendering free-viewpoint images. Our method fo-
cuses more on creating a 3D model, thereby significantly
departing from this line of works.

1



𝝁

𝝈

𝒛

𝒆𝒊

Δෝ𝒏𝒊

64 64 64 64

32

𝓔 𝓓

8

8

8

64 64 64 64

256

𝒇𝒊

𝓕𝒊

256 256

𝓖

𝒄

3

3

256

𝓗

𝜎

1

Figure A. Architecture of our network. Each orange rectangle
represents a fully-connected layer followed by ReLU activation,
and the numbers of output channels are labeled underneath.

MVP [6] also proposes to use local volumetric repre-
sentation for deformable surface rendering. However, our
work is essentially different from MVP: 1) MVP requires
an estimate of scene geometry to construct the volumetric
primitives, while our method works without knowing scene
geometry; 2) MVP assumes accurate tracking of scene ge-
ometry over time, while our method is carefully designed to
directly learn the motion hierarchy from data; 3) MVP only
handles head movements and facial expressions, while our
method can deal with challenging body motions and cloth
deformations; 4) MVP mainly focuses on efficient render-
ing of training frames, while our method supports novel
pose generation with explicit pose control.

C. Implementation Details

C.1. Architecture Details

We illustrate the network architecture in Fig. A. Note that
before feeding the coordinates, view directions and time
stamps into the MLP, we augment them using sinusoidal
encoding, which is defined as:

γ(x) =
(
x, sin(x), cos(x), ..., sin(2m−1x), cos(2m−1x)

)
.

The value of m is 6 for coordinates, 4 for view directions
and 12 for time stamps. We normalize the time stamp before
sinusoidal encoding, e.g., the time stamp for t-th frame is
normalized to t/T , where T is the total number of frames.

Note that the vanilla NeRF adopts a hierarchical sam-
pling strategy and simultaneously optimizes two networks
(one “coarse” and one “fine”), while we only train one net-
work with uniform sampling for fair comparison against
baseline methods.

Table A. Hyperparameters for network training and evaluation.

Parameter Name Value

N (Number of Nodes) 128
σ (In Eqn. 6) 0.05
ϵ (In Eqn. 6) 0.001
λrec (In Eqn. 11) 1.0
λtrans (In Eqn. 11) 0.02
λebd (In Eqn. 11) 0.1
λKL (In Eqn. 11) 1× 10−5

Dimension of ei (In Eqn. 5) 32
Dimension of zi (In Eqn. 9) 8
Number of Ray Samples Per Batch 2048
Number of Point Samples Per Ray 64
Batch Size 4
Learning Rate 5× 10−4

Adam β1 0.9
Adam β2 0.999

C.2. Network Acceleration
Naively implementing our network will lead to heavy

computational complexity, as one needs to query every local
network for all point samples. To reduce network queries
and accelerate program execution, we exploit the fact that
for any point in the posed space, only a small portion of
nodes have an influence on its color and density value. This
is because the influence range of the nodes is truncated, as
mathematically defined in Eqn. 6. Based on this obser-
vation, we implement custom CUDA kernels for accelera-
tion purpose. To be more specific, let S denote the num-
ber of point samples and N the number of nodes (which is
also the number of local MLPs). In the naive implemen-
tation, the points are first transformed into the local coor-
dinate systems of the nodes, which results into a tensor of
size N×S×3 being fed into the network. In our optimized
implementation, we first calculate the number of necessary
point queries for each local MLP (indexed by i), which is
denoted as Si. Then we construct an empty tensor of size
N × S′ × 3, where S′ = max{S1, S2, ..., SN}. By investi-
gating the values of blending weights, we pick the valid ele-
ments in the original tensor and rearrange them into the new
one, which is finally fed into the network. With our opti-
mized implementation, the memory consumption decreases
about 85%, and the running time decreases by a factor of 4.

D. Experimental Details
D.1. Dataset

In our experiments, we mainly use the following dataset:
• Dataset from [2]. We use two dress sequences (“Ling”

and “FranziBlue”) in this dataset. Each sequence contains
about 20000 training frames captured using 100 cameras,
but we manually select 20 views among them for compu-
tational efficiency.

• Dataset from [3]. We use one sweater sequence (“Lan”)
in this dataset, which is captured from 11 cameras and
contains about 30000 training frames.



Table B. Quantitative evaluation of the node-related variables.
We generate the images for training poses under different settings
and report the averaged PSNR scores of all frames.

Setting w/o {∆n
(t)
i } or {e(t)

i } w/o {e(t)
i } Full

Corresponding
figure Fig. 3 (b) Fig. 3 (c) Fig. 3 (d)

PSNR 17.52 20.47 21.48

Table C. Quantitative evaluation of our cVAE design. We re-
place the cVAE with a determinstic regression network and report
the reconstruction accuracy (PSNR) of training frames.

Setting Deterministic Ours

Corresponding figure Fig. 9 (b,e) Fig. 9 (c,f)

PSNR 25.34 25.62

• ZJU-MoCap dataset [9]. We mainly conduct experiments
on two sequences (“CoreView387” and “CoreView392”).
Each sequence contains about 300 training frames cap-
tured from 23 view points, but we only use 4 view points
among them for fair comparison against Neural Body [9].

• Multi-view dataset collected by ourselves. We built up
a multi-view system that consists of 24 uniformly dis-
tributed cameras. Our system can capture synchronized
videos at 30Hz with a resolution of 1024×1024. We
collect data for three subjects and the frame numbers of
videos range from 2500 to 5000.
We use [12] to register SMPL(-X) model to the video

frames, and use BackgroundMattingV2 [4] for foreground
segmentation.

D.2. Training Details
We use PyTorch to implement our networks. The hyper-

parameters needed for network implementation and training
are reported in Tab. A. Note that during network training,
the learning rate decays exponentially every 20k iterations.
The number of iterations is set to 100k for People Snapshot
dataset [1], 300k for ZJU-MoCap dataset [9] and 500k for
other multi-view sequences. For baseline methods, we use
the author-provided code and run all the experiments using
the default training settings.

D.3. Metrics
As described in the paper, we use two standard metrics,

peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM), for quantitative evaluation. To reduce the
influence of background pixels, all the scores are calculated
from the images cropped with a 2D bounding box which is
estimated from the projection of SMPL model. More details
are described in this link.

E. More Experiments
Quantitative ablation of node-related variables. We con-
duct a qualitative ablation study on the effects of the node-

Figure B. Impact of the latent zi. We show the testing results
when the same pose are given but zi is set to zero (leftmost) or
assigned with random Gaussian noises (right).

related variables in Fig. 3 in the main paper. In Tab. B we re-
port the corresponding quantitative results across all frames
to further evaluate the impact of the node-related variables.
Quantitative ablation of our cVAE design. Similarly,
we report the corresponding quantitative results across all
frames in Tab. C to further evaluate our cVAE design. The
numeric results further prove that our cVAE design is criti-
cal for better reconstructing the realistic details in the train-
ing frames, which is consistent with our conclusion in the
main paper.
cVAE ablation with novel
poses. In Fig. 9 we mainly con-
duct the cVAE ablation study on
training frames. In the right inset
figure we conduct an identical
experiment using novel poses
from a testing sequence. The
results also show that our cVAE
design is benefitial for learning
sharper wrinkle details.
Impact of the latent zi. As we mentioned in Sec. 4.1, we
set zi to zeros when synthesizing images of novel poses. In
fact, latent zi does not have to be zeros and can be mod-
ified in accordance of applications. In Fig. B, we show
that modifying the latent zi will lead to different wrinkle
patterns. This feature can be further explored to generate
multiple plausible animation sequences, and we leave it as
future work.

F. Limitation and Future Work
As we discuss in Sec.6 in

the main paper, our method
may fail to generate plausi-
ble results when the anima-
tion poses starkly differ from
the training poses; see the in-
set figure on the right for an
example. The main reason for
this phenomenon is that nei-
ther subject-specific templates nor the SMPL surface is used
to regularize shape learning in our method. Consequently,
we cannot guarantee that our model is fully aware of the un-
derlying geometry and its articulated surface deformation.
Geometrical priors of clothed humans [7] can be employed
to resolve this limitation and we leave it for future work.

In addition, the dynamic deformations and wrinkle



changes of garments involve complex physics processes,
which may be beyond the representation capability of
sparse nodes. Denser nodes could probably alleviate this
limitation, but this will result in heavier computational bur-
den. In fact, modeling the physics attributes of real-world
garments is a long-standing, extremely difficult problem in
computer graphics. We are currently seeking a better ap-
proach that can combine the merits of learning-based im-
plicit representations and physics-based cloth simulation.

References
[1] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian

Theobalt, and Gerard Pons-Moll. Video based reconstruction
of 3d people models. In CVPR, 2018. 3

[2] Marc Habermann, Lingjie Liu, Weipeng Xu, Michael Zoll-
hoefer, Gerard Pons-Moll, and Christian Theobalt. Real-time
deep dynamic characters. ACM TOG, 40(4), aug 2021. 1, 2

[3] Marc Habermann, Weipeng Xu, Michael Zollhofer, Gerard
Pons-Moll, and Christian Theobalt. Deepcap: Monocu-
lar human performance capture using weak supervision. In
CVPR, 2020. 2

[4] Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta,
Brian L. Curless, Steven M. Seitz, and Ira Kemelmacher-
Shlizerman. Real-time high-resolution background matting.
In CVPR, 2021. 3

[5] Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu
Sarkar, Jiatao Gu, and Christian Theobalt. Neural actor:
Neural free-view synthesis of human actors with pose con-
trol. ACM TOG (ACM SIGGRAPH Asia), 2021. 1

[6] Stephen Lombardi, Tomas Simon, Gabriel Schwartz,
Michael Zollhöfer, Yaser Sheikh, and Jason M. Saragih.
Mixture of volumetric primitives for efficient neural render-
ing. ACM TOG, 40(4):59:1–59:13, 2021. 2

[7] Qianli Ma, Jinlong Yang, Siyu Tang, and Michael J. Black.
The power of points for modeling humans in clothing. In
ICCV, 2021. 3

[8] Sida Peng, Junting Dong, Qianqian Wang, Shangzhan
Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao. Ani-
matable neural radiance fields for modeling dynamic human
bodies. In ICCV, 2021. 1

[9] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In CVPR,
2021. 1, 3

[10] Amit Raj, Julian Tanke, James Hays, Minh Vo, Carsten Stoll,
and Christoph Lassner. ANR: articulated neural rendering
for virtual avatars. In CVPR, 2021. 1

[11] Aliaksandra Shysheya, Egor Zakharov, Kara-Ali Aliev,
Renat Bashirov, Egor Burkov, Karim Iskakov, Aleksei
Ivakhnenko, Yury Malkov, Igor Pasechnik, Dmitry Ulyanov,
Alexander Vakhitov, and Victor Lempitsky. Textured neural
avatars. In CVPR, 2019. 1

[12] Yuxiang Zhang, Zhe Li, Liang An, Mengcheng Li, Tao Yu,
and Yebin Liu. Light-weight multi-person total capture using
sparse multi-view cameras. In ICCV, 2021. 3


