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1. MDC vs. ADI

In this section, we provide the comparison between the
fake data generated by our MDC and ADI [3]. Though
both MDC and ADI [3] aim to diversify fake images, their
manners are quite different: our MDC manipulates the dis-
tances among features of fake images, while ADI enlarges
disagreement between the student model and the teacher
model. Fig. 1 shows feature visualization of ADI and our
MDC: the features of MDC scatter a lot while ADI is in a
dense concentration. Besides, using 5,120 synthetic images,
our MDC obtains 63.77% top-1 accuracy with ResNet-18
on ImageNet, while ADI only has 54.97% (we use the of-
ficial code of ADI). Thus, our MDC can produce more di-
verse synthetic images as well as better performance.
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Figure 1. Feature visualization of ADI and MDC.

2. Other Preprocessing in LOR

In this section, we report the results of using other pre-
processing operations. Tab. 1 shows no increase from flip
and rotation. This is because our LOR aims to capture infor-
mative content at different scales and positions of the syn-
thetic images. Flip and rotation may not benefit this goal.

Operations L L+F L+R L+R+F
Acc (%) 66.47 66.34 66.31 66.42

Table 1. Results of 4-bit ResNet-18 on ImageNet when adding flip
and rotation to our LOR. “L”: LOR; “F”: flip; “R”: rotation.

3. Data Amount
Tab. 2 shows the ablation on amount of synthetic images.

Note that we achieve 65.87% accuracy using only 256 im-
ages, better than all previous methods, such as the SOTA
GZNQ with 64.50% using 100,000 images.

Amount 256 1,280 5,120 10,000 20,000
Acc (%) 65.87 66.14 66.47 66.49 66.50

Table 2. Performance of our IntraQ w.r.t. different amounts of
synthetic images (4-bit ResNet-18 on ImageNet).

4. More Comparisons
Tab. 3 shows more comparisons with recent ZSQ meth-

ods including Qimera [1] and SQuant [2]. We report the
top-1 accuracy of 4-bit ResNet on ImageNet. Note that
SQuant sets the input of the last layer to 8-bit while our
IntraQ and Qimera quantize all layers to 4-bit.

Bit-width Method Generator Acc. (%)
Real data - 67.89
Qimera ! 63.84
SQuant % 66.14W4A4

IntraQ (Ours) % 66.47

Table 3. Results of ResNet-18 on ImageNet. WBAB indicates the
weights and activations are quantized to B-bit.
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