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1. NTU-RGBD: Effectiveness on Large-scale Data

NTU-RGBD has two subsets, i.e., NTU-RGBD 60 [21] and NTU-RGBD 120 [9]. We evaluate our model on the former
since it is included in more comparison results of previous researches. NTU-RGBD 60 is a large-scale dataset for 3D action
recognition, with 56880 RGBD videos of 60 action categories. The data is converted into point cloud sequences with the
implementation of PSTNet [4].

Comparison Following the official data partition [21], cross-subject and cross-view scenarios are individually adopted as
two splits. As shown in Table 1, Kinet is superior to the others, with an accuracy of 92.3% in the cross-subject split. In the
cross-view protocol, Kinet comes a close second (with 96.4%) after 96.5% of PSTNet.

Methods Modalities Acc.uracy (%) .
Cross-subject ~ Cross-view
SkeleMotion [2] Skeleton 69.6 80.1
GCA-LSTM [11] Skeleton 74.4 82.8
Attention-LSTM [10] Skeleton 77.1 85.1
AGC-LSTM [24] Skeleton 89.2 95.0
AS-GCN [8] Skeleton 86.8 94.2
VA-fusion [32] Skeleton 89.4 95.0
2s-AGCN [23] Skeleton 88.5 95.1
DGNN [22] Skeleton 89.9 96.1
MS-G3D [13] Skeleton 91.5 96.2
] HON4D [19]  DepthMap 306 73
SNV [31] Depth Map 31.8 13.6
HOG? [ 18] Depth Map 322 22.3
Lietal [7] Depth Map 68.1 83.4
Wang et al. [26] Depth Map 87.1 84.2
MVDI [29] Depth Map 84.6 87.3
" 3DV-Appearance [28]  PointCloud ~ 80.1 85.1
3DV-Motion [28] Voxel 84.5 95.4
3DV-Full [28] Point Cloud + Voxel 88.8 96.3
P4Transfomers [3] Point Cloud 90.2 96.4
PSTNet [4] Point Cloud 90.5 96.5
Kinet Point Cloud 92.3 96.4

Table 1. Quantitative results achieved on NTU-RGBD 60.



2. Implementation Details

For the sake of reproducibility, we elaborate the implementation as detailed as possible and the source code will be released
soon.

2.1. Matrix Inversion

Equation (6) in the main body of this paper is to fit the group-wise ST-surface via the closed-form least-squared solution:
[AF*, br] = (Fl(tk:)TWZt]C)FZ(];C))ilFl(QTW’L(tk)TEtIZJ ) 6]

where the weight matrix Wz(tk) = diag(wf,z, ...7w‘(]:])(t)| )€ RINIXINIT the feature matrix Fﬁ) =[(fix,1), .., (leqst)lyk, 1)] e
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Note that we do not utilize the default implementation of matrix inversion on Tensorflow [1] since the default implemen-
tation using the LU decomposition is specially designed for large matrices. In our settings, matrices are relatively small in
each group and we adopt home-brew approaches to matrix inversion. Given an n X n square matrix M € R™*", we inverse
the matrix according to its size.

In the case of extremely small matrices (n < 4), we directly inverse the matrix with element-wise calculations. For
example, let M = (;,% Iﬁj) € R2?*2_ The inversion of this matrix is M~ = m ( R ) where mimy —
meoms is clipped to the minimal value of 1 x 106 for the numerical stability of singular matrices. In terms of medium
matrices (4 < n < 16), we recursively inverse the partitioned matrices based on the aforementioned element-wise operations
for small matrices. For the case n > 16, we leverage Cholesky decomposition [6] to solve the matrix inversion.

2.2. Network Structures
2.2.1 Kinet: MLP-based Backbone (PointNet++)

The MLP-based methods separately model every point with shared multi-layer perceptions (MLPs), followed by a symmetric
aggregation (e.g., max pooling) to fuse order-invariant information. In this paper, we choose PointNet++ [20] as our MLP-
based backbone for static point clouds. For a fair comparison, we keep the number of parameters in each layer identical to
FlickerNet [15], one of the state-of-the-art gesture recognition networks on sequential point clouds.

2.2.2 Kinet: Graph-based Backbone (DGCNN)

Unlike the MLP-based backbones independently capturing point-level representations, graph-based methods model point-
wise interactions by regarding a point cloud as a graph, of which each point is the vertex and edges is established upon the
neighboring distribution of these points. For the graph-based paradigm, we conduct experiments on the static backbone of
DGCNN [27] and keep the default settings of layer-wise parameters including the feature aggregation of the channel-wise
additions in [27].

2.2.3 Kinet: Conv.-based Backbone (SpiderCNN)

Different from the other two paradigms using graphs or MLPs, the conv.-based models directly devise the convolution partic-
ularly for unstructured point clouds. We adopt SpiderCNN [30] as our convolution-based static backbone and keep the same
layer-wise settings including the feature aggregation of concatenation and top-k pooling.

2.3. Training Configurations

The proposed framework is implemented with Tensorflow [1]. All experiments are conducted on the NVIDIA DGX-1 sta-
tions with Tesla V100 GPUs. During the training stage, the hyper-parameters are batch_size = 16, base_learning_rate =
0.001, with an Adam optimizer [5]. The number of training epochs depends on various datasets: 200 epochs on NvGes-
ture/SHREC’17, 150 epochs on MSRAction-3D, and 20 epochs on NTU-RGBD. For training stability, we first train the static
backbone (spatial stream) until convergence and then freeze its weights to individually optimize the dynamic branch (tempo-
ral stream). To make full use of the features in various scales, multiple layers are connected to output the final results. As for
the hyper-settings of Kinet itself, we set the ratio of feature reduction as 50%, group-wise dimensions d = 4, temporal radius
At = 1, and spatial radius Ar = 0.5, respectively.



2.4. Point Activation Clouds

This concept stems from FlickerNet [ 5], which indicates the highlighted points of a model. Likewise, P4Transformer [3]
and PSTNet [4] have the similar visualization concepts of the attentional values and the convolutional outputs, respectively.
For readability, we formulate the concept of Point Activation Clouds (PACs) for the proposed two-stream framework.
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Given a frame P, of point clouds at the t* time step, denote the activated feature vector of the i*" point p
layer as ¢, (pl(-t)). The PAC of a centroid p(t) in this layer is defined as:
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where N, i(t) is the space-time neighbor set of pl(-t). Thus, the larger PACs reflect the greater activated values for these centroids,
which highlights the discernible outputs in the [*" layer.

In the main body of this paper, we visualize the PACs of the last layer before the first max-pooling operation in the static
stream of PointNet++ [20] and the corresponding layer in our dynamic branch.

2.5. Point-wise Scene Flow Estimation of Flow-based Baselines

In Section 4.3 of the main body, a self-supervised framework Juszgo [17] is trained to estimate scene flow and we adopt
it as an additional input in the setting 3). Note that Kinet does not require scene flow and setting 3) serves as the flow-based
baseline.

2.5.1 Self-supervised Training Details

Based on the model pre-trained on Flythings3D [14], we train the scene flow estimator with the following hyper-parameters:
batch_size = 8, radius = 5, flip_prob = 0.5, base_learning_rate = 0.001, with an Adam optimizer [5]. The balancing
weight of the nearest neighbor loss and the cycle loss is set as 1:1.

2.5.2 Inference

The scene flow is first extracted by applying the trained Justgo model. Then, we scale the estimated scene flow to the same
range of the raw point clouds, so that a static model with default hyper-parametric settings can be directly applied to the
input modality of scene flow. Note that the number of parameters in a trained Justgo (excluding the parameters of the Adam
optimizer) achieves 3.54M. For a 16-frame snippet with 2048 points per frame, the snippet-wise computational complexity
of scene flow extraction is 154.29G FLOPs. The computational overhead of scene flow estimation is considerable.

2.5.3 Visualization

As depicted in Figure 1b, scene flow is decently estimated between two consecutive frames (as depicted in Figure 1a) with
the self-supervised network. It is observed that key motions of the runner’s legs are well captured but the interpolation results
for the runner’s head are insufficiently accurate: scene flow estimation without explicit supervision is a highly challenging
task. As one of the input modalities for a vanilla two-stream model, the scaled scene flow in Figure 1c highlights the legs’
movements, still preserving crucial dynamic information.

3. Detailed Experimental Results
3.1. Quantitative Computational Costs

In section 4.3 of the main body, we conduct 3 groups of experiments: 1) Directly feed videos into the static model; 2)
Fuse the static model and the dynamic branch; 3) Ensemble classification scores from two static models, one is trained on
the raw point clouds, while the other is trained on estimated scene flow. As shown in Table 2, the extra input modality
of estimated scene flow in setting 3) (+S, Flow-based Two Streams) considerably improves the accuracy of the three static
models (Static PointNet++, DGCNN and SpiderCNN) to a level comparable to the state-of-the-art. However, the scene flow
estimator and another flow-based classifier almost triple the number of parameters. Even worse, the estimation of scene flow
introduces more than 150G FLOPS of extra calculations since the point-wise dense predictions are required between every
two consecutive frames. For setting 2) (+Ours, Kinet), it is observed that our kinematic representations consistently increase



(a) Point Cloud

(c) Scaled Flow

Figure 1. Estimated point-wise scene flow of the flow-based baselines on MSR Action-3D. The darker color indicates the greater depths (in
point clouds) or the larger motions (in scene flow). (a) is the input of raw point clouds. For the frame interpolation in (b), the green points
are the ground-truth point clouds, while the blue points are the interpolation results based on the last frame and the estimated scene flow.
For the estimated scene flow in (c), it is normalized to the same scale as raw point clouds.

the accuracy of the static predictions by 5.99%~9.04% relative gains. By utilizing the kinematic representations, the FLOPS
only increases to 5.83G~15.29G, and the number of parameters increases by 0.59M~1.08M. These computing overheads
are negligible and make the fused model extremely lightweight.



Model FLOPS (G) #PARAMS (M) Accuracy (%)

Static PointNet++ [20] 4.82 2.13 84.30

Flow-based Two Streams (PointNet++) 163.93 7.79 90.23
Kinet (Pointnet++) 10.35 3.20 91.92

Static DGCNN [27] 5.33 5.25 84.18

Flow-based Two Streams (DGCNN) 164.95 14.04 89.56
Kinet (DGCNN) 5.83 5.85 89.82

Static SpiderCNN [30] 13.40 8.03 83.49

Flow-based Two Streams (SpiderCNN) 181.09 19.60 89.23
Kinet (SpiderCNN) 15.29 8.62 88.54

Meterornet [12] 1.70 17.60 88.21

PSTNet [4] 54.09 8.44 89.90

P4Ttransformer [3] 40.38 42.07 89.56

Table 2. Quatative results of parameter number, FLOPS and accuracy on 16-frame MSR Action-3D.

3.2. Per-class Performance Gains

Following Liu et al. [12], we report the performance gains over the original static model on MSRAction-3D. Under the
same experimental configurations as the main body, we take 16 frames as an input unit and sample 2048 points for each
frame. By comparing with the baseline (PointNet++) accuracy of setting 1), we report the performance changes of setting 2)
and 3) in per-class action categorization.

As illustrated in Figure 4a, our dynamic branch significantly improves the classification accuracy of the static model.
Noticeably, the categories of “High Throw” and “Hand Catch” show more than 30% absolute performance gains and most
of the other performance changes achieve at least 20% improvements. There is only one category (“Horizontal Arm Wave”)
with about 6% performance decline. Figure 4b demonstrates that the extra input modality of estimated scene flow also boosts
the overall performance. It has a large performance drop of more than 10% in the category of “High Arm Wave” and limited
performance gains on many classes. Compared with the raw scene flow, our kinematic approach has high robustness and
considerable improvements because it does not rely on the inaccurate estimation of scene flow.

3.3. Confusion Matrices

Following prior researches [15, 16] on point-based gesture recognition, we utilize confusion matrices to report the de-
tailed performance on NvGesture and SHREC’17. A confusion matrix (a.k.a. an error matrix) shows whether a classifier is
confounded by two categories, of which each column represents the instances in an actual class and each row represents the
examples in a predicted category.

In the main body, we evaluate our model on SHREC’17 under two input cases: 1) based on the entire video with back-
grounds of the performer’s body (w/o BBox); 2) based on the area of hand skeletons inside the bounding boxes (w/ BBox).
It is observed in Figure 5 that the absence of bounding boxes leads to misclassification for more categories (e.g., “Tap-1" and
“Swipe Down-1") but the total number of error instances is quite small. From this, it is observed that Kinet manifests high
robustness to backgrounds.

As depicted in Figure 6, our framework is able to distinguish an overwhelming majority of gestures. However, it fails in
some extremely challenging cases. For example, the classifier confuses the category “Show Two Fingers” with “Push Two
Fingers Away” possibly because point clouds are scarce and sparse in the part of fingers, which makes it difficult to capture
subtle differences between these two gestures.

4. More Visualizations
4.1. Point-level Sequential PACs

Due to the page limitation in the main body, we visualize the depth videos and dynamic PACs in Figure 6 with the format
of animations. In case the PDF reader cannot display the animations normally, we provide the sequential images as shown in
Figure 2.

Unlike most of the prior works only focusing on the background-free cases, we adopt two input settings to verify whether
Kinet can capture useful movements and ignore meaningless ones: 1) w/ BBox (Figure 2a) - used by a majority of existing



methods for high accuracy, based on the area inside the bounding boxes of hand skeletons without background interference;
2) w/o BBox (Figure 2d) - raw videos with noisy backgrounds (the performer’s body). With bounding boxes removing
noisy backgrounds, the two streams work complementary - the static branch (Figure 2b) highlights the main parts (the
palms) of spatial appearances, whereas the temporal representations (Figure 2¢) capture key motions, such as the movement
of fingers and wrists. In the case with redundant backgrounds (without bounding boxes), the static stream (Figure 2e)
excessively focuses on the large yet useless background portions (the performer’s body), while the temporal stream (Figure 2f)
captures the moving parts (arms and fingers). Inevitably, the temporal stream also highlights several redundant points of the
performer’s shaking head by mistake.

4.2. Video-level t-SNE Features

Different from PACs encoding point-level activation in intermediate layers, the last-layer features before the classifier
aggregate the video-level information in the whole model. To qualitatively analyze the video-level representations, we project
these last-layer features to the 2-dimensional space through t-SNE [25].

As shown in Figure 3a & 3a, in the cases without backgrounds (w/ BBox), our dynamic branch (the temporal stream) has
better intra-class compactness and inter-class separability than the static one (the spatial stream). Though the dynamic branch
shows overall superiority, the static stream is complementary to it: the dynamic branch sometimes confuses the orange data
points with the yellow ones, while the static branch is capable of discriminating them correctly. In the case with backgrounds
(w/o BBox), Figure 3c & 3d demonstrate that the background noises have negative impacts on both static and kinematic
representations. In this case, our dynamic features are still highly robust to backgrounds compared with the static ones.
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Figure 2. Sequential raw depth inputs and point-level PACs on SHREC’17. In PACs, the points in red have the highest activation values,
while the blue ones are the lowest activating points. The animations of the above figures can be found in Figure 6 in the main body of our
paper.
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Figure 3. Feature visualizations on SHREC’ 17 with video-level t-SNE. For clarity, 8 out of the 28 classes are presented in the above figures.
A video is visualized as a data point, of which the same color means the identical ground-truth category. The intra-class compactness and
the inter-class separability reflect the representative ability of a model.
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Figure 4. Per-class accuracy gains (%) over the static model on 16-frame MSRAction-3D. The blue bar indicates the postive change,
whereas the red one represents the negative change.
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Figure 6. Confusion matrix on NvGesture.
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