
Appendix for Adversarial Eigen Attack on Black-Box Models

1. Proof
1.1. Proof for Theorem 1

Theorem 1 The optimal solutions for problem given by (P1) and (P2) are that δ1, δ2, · · · , δm are just the eigenvectors
corresponding to the top-m eigenvalues of JTJ .

Proof 1 For the first optimization problem given by (P1), as JTJ is a real symmetric matrix, considering the eigenvalue
decomposition JTJ = UΣUT . Hence, we have ||Jδ1||22 = δT1 J

TJδ1 = δT1 UΣUT δ1. Let q = UT δ1, the original
optimization problem could be written as:

max
q

qTΣq =

m∑
k=1

λkq
2
k, s.t.

m∑
k=1

q2k ≤ 1

As
∑

λkq
2
k ≤ λ1 ·

∑
q2k ≤ λ1, and the condition of equality is reached when q = [1, 0, · · · , 0]T . Therefore, easy to

show that the unique solution for δ1 is given by the first column of U . Using the similar techique, and noticing that
δTj J

TJδi = δTj · λiδi = 0 when δi and δj are two different eigenvectors of JTJ . The constraint of the second recursive
problems is satisfied.

1.2. Proof for Theorem 2

Theorem 2 (Property of Eigen Perturbations) Assume there is no prior information about the gradient of g̃ (the direction
of the actual gradient is uniformly distributed on the surface of an m-dimensional ball with unit radius). Given a query
budget K for each iteration, the perturbations l⃗1, l⃗2, · · · , l⃗K on representation space and the corresponding perturbations
δ1, δ2, · · · , δK on input space solved by Problem 5 (in original paper) is most efficient among any choice of exploring K
orthogonal perturbation vectors on the representation space. Specifically, the final one-step gradient for ∇z[g̃(z; θ̃)y] is
estimated by:

∇z[g̃(z; θ̃)y] =

K∑
i=1

(
∂g̃(z; θ̃)y

∂l⃗i

∣∣∣∣∣
z

· l⃗i

)
and the expected change of the output probability dpF (y|x) reaches the largest with the same l2-norm of perturbation on input
space for all cases.

Proof 2 Consider the relative change of pg̃◦h(y|x) with respect to x:

dy = dxT · ∇x[F (x; θ)y] = dxT · (Jh(x)T∇z[g̃(z; θ̃)y])

For simplicity, define J = Jh(x), and g̃(z; θ̃)y = Qβ, where Q = [q1, q2, · · · , qK], a group of orthogonal basis with unit
length, and β is K × 1 vector representing K directional derivatives on Q. Thus we have:

dy = dxTJTQβ

To maximize dy/||dx||2, we set dx = ηJTQβ and then:

max||dx||2≤ϵ
dy

||dx||
=

ηβTQTJJTQβ

||ηJTQβ||2
= ||JTQβ||2

1

As there is no prior information about the direction of the gradient of g̃, β could be viewed as a random vector with a fixed
length uniformly distributed on the surface of an m-dimensional ball. Thus, the optimization problem is converted to:

maxQ Eβ [β
TQTJJTQβ]

where Q is column orthogonal.
Next, consider the space formed by all eigenvectors of JJT , i.e. l1, l2, · · · , lm, sorted by eigenvalues in descending order.

Define L = [l1, l2, · · · , lm]T . As Q is formed by choosing K columns from a certain orthogonal matrix, L is also an orthogonal
matrix, immediately we have Q = LTC for certain m×K matrix C. Noticing that JJT li = λili, hence,

Eβ [β
TQTJJTQβ] = Eβ [β

TCTLJJTLTCβ] = Eβ [β
TCTΣCβ]

where Σ = diag(λ1, λ2, · · · , λm).
The final step is to demonstrate C = Im×K will be optimal. Consider a new random vector γ = Cβ, we have:

Eβ [β
TCTΣCβ] = Eβ [γ

TΣγ]

= Eβ

 m∑
j=1

λjγ
2
j

= Eu

Eβ

 m∑
j=1

λjγ
2
j

∣∣∣∣∣∣
K∑
i=1

β2
i = u

= Eu

m∑
j=1

λjEβ

[
γ2
j

∣∣∣∣∣
K∑
i=1

β2
i = u

]
≤ Eu

K∑
j=1

λjEβ

[
β2
j

∣∣∣∣∣
K∑
i=1

β2
i = u

]
= Eβ

 K∑
j=1

λjβ
2
j

 = Eβ [β
T ITm×KΣIm×Kβ]

(1)

The key step is the inequality from 4th row to 5th row, which is not obvious. To demonstrate this, we first notice that

m∑
j=1

Eβ

[
γ2
j

∣∣∣∣∣
K∑
i=1

β2
i = u

]
=

K∑
j=1

Eβ

[
β2
j

∣∣∣∣∣
K∑
i=1

β2
i = u

]
= u (2)

This is because C is an orthogonal transformation. Also, we have for j = 1, 2, · · · ,K:

Eβ

[
γ2
j

∣∣∣∣∣
K∑
i=1

β2
i = u

]
≤ Eβ

[
β2
j

∣∣∣∣∣
K∑
i=1

β2
i = u

]
(3)

To simplify the notation, we directly use Eβ [γ
2
j] and Eβ [β

2
j]. We prove this conclusion as follows:

Eβ [γ
2
j] = Eβ [(c

T
j β)

2] = Eβ [((cj,S + cj,S⊥)Tβ)2]

= Eβ [((c
T
j,Sβ)

2] = ||cj,S ||22Eβ [β
2
j] ≤ Eβ [β

2
j]

The idea is that, let S be the subspace constructed by top-K columns of L, we decompose the jth column of the orthogonal
transformation C, i.e. cj as cj,S ∈ S and cj,S⊥ ∈ S⊥. cj,S⊥ has no contribution to the expectation, and only cj,S contributes
to the expectation. Due to the symmetry characteristic of β on S, we have Eβ [((c

T
j,Sβ)

2] = ||cj,S ||22Eβ [β
2
j]. And as the

maximum length of cj is 1, the conclusion is proved.
By Equation 2 and 3, the inequality in 1 is obvious for the eigenvalues λ is sorted in descending order.
We further note that l1, l2, · · · , lK and the δ1, δ2, · · · , δK are just the top-K eigenvectors of JJT and JTJ , completing the

proof.

2. Implementation Details
2.1. Taking Advantage of Image Continuity

In practical experiments, the operation of truncated SVD is time-consuming. Consider a network h with input size
n = H × W × C and the output size m (i.e. dimension of representation), the Jacobian matrix will be m × n, and the
complexity of SVD operation is O(m2n), which may be slow when the image size is large.

A simple way to decrease the complexity is to aggregate adjacent pixels together, taking advantage of image continuity.
Specifically, suppose the image size is H0 ×W0, and we would like to decrease the input to H1 ×W1. First, we define the
scale to be sh = ⌊H0/H1⌋ and sw = ⌊W0/W1⌋. Then, while processing EigenBA, we only change the pixel in the center
area (sh ·H1)× (sw ·W1) of the original image.

The forward propagation remains unchanged, where the input is still H1 ×W1. As to the backward propagation, we only
need to calculate the Jacobian matrix of representation z with respect to the center area (sh ·H1) × (sw ·W1). And then,
we process average pooling with scale (sh, sw) and stride (sh, sw) for each row of Jacobian matrix J . (It is noteworthy that
each row of J is an (sh · H1 · sw · W1) vector, hence, before average pooling operation we need to restore the vector to
(sh ·H1) × (sw ·W1) matrix.) Finally, the new Jacobian matrix J ′ should be a m × (H1 ×W1) matrix. After processing
SVD to J ′, the right singular vector should be a H1 ·W1 vector, which represents for the perturbation, naming δ′. Finally, the
actual δ related to the center area (sh ·H1)× (sw ·W1) pixels should be obtained by applying nearest upsampling method to
δ′ with scale (sh, sw).

Through this simple method, we reduce the computation of SVD to about 1/(sh · sw) of the original method.

2.2. Rounding Technique

For all experiments, we follow the setting of SimBA and ParsiBA for fair comparison, where the input pixel could be
any real number on [0, 1]. However, in practical use, the value of pixel is discrete in image classfication. In this section, we
introduce a simple rounding technique.

The method is rather simple: after each renewal, for each pixel value v, we find the integer N , such that N/255 ≤ v <
(N + 1)/255. Then, we round the value v to the nearer one, either N/255 or (N + 1)/255. Table 1 shows the difference
whether using the rounding technique corresponding to our experiment on attacking ResNet-50 trained on ImageNet.

The results show that, the rounding technique will only slightly increase average l2 and average query numbers, which is
acceptable in practical use.

2.3. Hyperparameters

In this section, we mainly describe the hyperparameters for all settings.
For attack on ResNet-50 trained on ImageNet, the maximum query number of each attacked image is limited to 10,000.

For SimBA, the stepsize of gradient, α is set to 0.2. For SimBA-DCT, the stepsize is set to 0.2, the dimensionality of 2D
frequency space is set to 28 and the stride for block order is set to 7. For ParsiBA, the maximum l∞ norm is set to 0.01. For
Trans-FGSM , the stepsize is set to 0.4 for untargeted attack and 0.3 for targeted attack. For Trans-FGM, the step size is set to
0.4 for both cases. For EigenBA, the stepsize is set to 0.4 for both cases, we also decrease the dimension of Jacobian matrix
from 512× (224 ∗ 224 ∗ 3) to 512× (112 ∗ 112 ∗ 3) by using the method described in Appendix 2.1. For processing SVD
once, we extract top 100 right singular vectors.

For attack on Inception-v3 trained on ImageNet, the size of original image is 299 ∗ 299, which is different from the input
of the pre-trained model (ResNet-18), our solution is to crop the center 224 ∗ 224 pixedls as the input of the pre-trained
model. Also, the purturbations are limited to these 224 ∗ 224 pixels, keeping the other pixedls unchanged during attacking.
The hyperparameters are the same as attacking ResNet-50 trained on ImageNet except for SimBA-DCT, we expand the
dimensionality of 2D frequency to 38 as original paper of SimBA.

For attack on ResNet-18 trained on Cifar-10, the maximum query number of each attacked image is limited to 2,000. For
SimBA, the stepsize of gradient, α is set to 0.04. For SimBA-DCT, the stepsize is set to 0.04, the dimensionality of 2D
frequency space is set to 32 (the same to original image size, which is optimal value in Cifar-10 experiment). For Trans-FGSM
the stepsize is set to 0.08, and for Trans-FGM, the stepsize is set to 0.06. For EigenBA, the stepsize is set to 0.08 for both
untargeted attack and targeted attack, the dimension of Jacobian matrix is 512 × (32 ∗ 32 ∗ 3), we do not use method in
Appendix 2.1 for Cifar-10 experiment. For processing SVD once, we extract top 50 right singular vectors.

For attack on ResNet-50 trained on WebVision, the maximum query number of each attacked image is limited to 5,000. For
SimBA, the stepsize of gradient, α is set to 0.2. For SimBA-DCT, the stepsize is set to 0.4, the dimensionality of 2D frequency
space is set to 28 and the stride for block order is set to 7. For Trans-FGSM the stepsize is set to 0.5, and for Trans-FGM,

Table 1. Untargeted attack on ResNet-50 trained on ImageNet, with or without rounding technique.

Methods Avg. queries
(success)

Avg. queries
(all) Success Rate Avg. l2

EigenBA (No rounding) 383 518 0.986 3.622
EigenBA (Rounding) 503 617 0.988 3.797

the stepsize is set to 0.4. For EigenBA, the stepsize is set to 0.4, we also decrease the dimension of Jacobian matrix from
512× (224 ∗ 224 ∗ 3) to 512× (112 ∗ 112 ∗ 3) by using the method described in Appendix 2.1. For processing SVD once, we
extract top 100 right singular vectors.

For ablation study on Cifar-10 in Section 4.4 in original paper, the stepsize for reserve rate 1.0, 0.9, 0.8, 0.7, 0.6, 0.5
experiment is 0.08, 0.07, 0.06, 0.05, 0.04, 0.03.

2.4. Complexity Analysis

We run all experiments on a single Ubuntu 16.04 server, with two 6-core 12-thread CPU Intel Xeon E5-2630. Totally there
are 24 threads. We use a single Nvidia Tesla P40 GPU.

The bottleneck of our algorithm is the SVD operation, which is an O(m2n) algorithm, as Section Appendix 2.1 shows. For
experiment on ImageNet, we decrease the Jacobian matrix to m = 512, n = 112 ∗ 112 ∗ 3 = 37, 632. And processing SVD
once costs about 2 seconds.

We use a batchsize of 5. For each loop starting with an SVD operation and ending with a number of perturbation renewals,
at the beginning of each batch the SVD operation will take about 2 ∗ 5 = 10 seconds, the several steps of perturbation renewals
(between 100 to 200 steps) cost about 5 seconds. With the number of unsuccessful attack samples decreasing in each batch, the
time for SVD operation will decrease. For untargeted attack on ImageNet, EigenBA will cost about 16 hours to finish 1,000
attacked images, and for targeted attack on ImageNet, the execution time will be about 100 hours for 1,000 attacked images.

To compare the time complexity of our algorithm to baselines fairly, we test the execution time of different algorithms on
attacking ResNet-50 trained on WebVision dataset in a closed test environment. The result in shown in Table 2, including
attacking 1,000 images. From the results, our EigenBA algorithm is comparable in time complexity to baselines.

Table 2. Execution time for attacking 1,000 images from WebVision dataset.

Methods SimBA SimBA-DCT Trans-FGSM Trans-FGM EigenBA (Ours)
Time 6h15min 9h49min 15h15min 14h31min 19h6min

3. Visualization of the Results
We randomly choose 4 attacked images from all attacked images for experiment on attacking ResNet-50 trained on

ImageNet. Figure 1 visualizes the original images and the adversarial images generated by our EigenBA. From Figure 1, the
difference between the original image and the adversarial image is barely visible to the naked eye. However, the adversarial
image is incorrectly classified by the deep neural network, which demonstrates the advantages of our algorithm. One interesting
finding is that, in the setting of untargeted attack, the misclassified label tends to be similar to the original label in semantic
meaning, for example, although the staffordshire bullterrier is different with the bull mastiff, they are both under the meta class
of Dog.

4. Pseudocode of SimBA Algorithm

𝛿 2 = 3.704

Query: 246

𝛿 2 = 4.048

Query: 258

Staffordshire bullterrier

bull mastiff

diaper

bassinet

bullfrog

tailed frog

book jacket

packet

𝛿 2 = 4.937

Query: 325

𝛿 2 = 2.459

Query: 388

Original

Images

Adversarial

Images

Original

Labels

Adversarial

Labels

Figure 1. Showcases of untargeted attack on ImageNet.

Algorithm 1 The SimBA Algorithm for untargeted attack

1: PROCEDURE SimBA(x, y,Q, ϵ): // Q represents for a group of orthogonal basis
2: δ = 0
3: p = ph(y | x)
4: while py = maxy′ py′ do
5: Pick randomly without replacement: q ∈ Q
6: for α ∈ {ϵ,−ϵ} do
7: p′ = ph(y | x+ δ + αq)
8: if p′

y < py then
9: δ = δ + αq

10: p = p′

11: break
12: end if
13: end for
14: end while
15: Return δ

	. Proof
	. Proof for Theorem 1
	. Proof for Theorem 2

	. Implementation Details
	. Taking Advantage of Image Continuity
	. Rounding Technique
	. Hyperparameters
	. Complexity Analysis

	. Visualization of the Results
	. Pseudocode of SimBA Algorithm

