
Supplementary for “Decoupling and Recoupling Spatiotemporal Representation
for RGB-D-based Motion Recognition”

1. Method
1.1. Supplementary for FRP Module

Normalization for Visual Guidance Map. To further

improve the numerical stability, we do the normalization

for generated visual guidance maps Gl
m (Eq.5 in main

manuscript) as:

Gl
m,norm =

Gl
m −Gl

m,min

Gl
m,max −Gl

m,min

(1)

where Gl
m,min and Gl

m,max represent the maximum and

minimum values in Gl
m, respectively; And Gl

m,norm rep-

resents the normalized visual guidance map.

Visual Guidance Map Alignment. To align the gener-

ated visual guidance maps with the input sequence, we shift

it backwards along the time dimension by m− n units, and

the guidance map of the previous m−n frames is filled with

the zeros matrix. Therefore, the final visual guidance map

can be formulated as:

Ĝl
norm = [Gl

1,norm, . . . , G
l
T,norm], ∀l = 1, 2, . . . ,M

s.t. Gl
t,norm =

{
Gl

t−(m−n),norm t > m− n

0 otherwise

(2)

where Ĝl
norm represents the aligned visual guidance map

with the input sequence. It then integrates with spatial

feature stream captured by the spatial multi-scale features

learning module (SMS) and serves as the input to next layer

of the network.

1.2. Structure of the SMS and TMS Modules

As shown in Figure 1, the spatial and temporal multi-

scale features learning module SMS and TMS are based on

the inception structure. And a Max Pooling operation is

embedded behind them to aggregate features with high cor-

relation to reduce information redundancy.

1.3. Loss Function

For training the unimodal network, inspired by [19], we

configurate three sub-branches in the decoupled temporal

representation learning network DTN, and each sub-branch

(a) SMS Module (b) TMS Module

Figure 1. The structure of the spatial multi-scale features learn-

ing module SMS and the temporal multi-scale features learning

module TMS.

imposes a constraint loss with weight coefficient of γ. In

addition, we also introduce two additional constraint losses

with weight coefficients of 1 − γ and 1.0, to constrain the

summation of three sub-branches and output of the RCM

module. So the overall loss for unimodal network training

is the sum of all of those losses, and can be denoted as:

Loverall
uni =γLS1

C + γLS2

C + γLS3

C +

(1− γ)LSall

C + LD

(3)

where S1, S2 and S3 represent the output of the three sub-

branch respectively; Sall = S1 + S2 + S3; and LC and

LD represent classification loss and distillation loss, respec-

tively. For training the multi-modal network, we introduce

a multi-loss collaborative optimization strategy, which can

be denoted as:

Loverall
multi =LSR

C + LSD

C + LSR

B + LSD

B +

LSR

M + LSD

M + LSR

D + LSD

D

(4)

where SR and SD represent the output of the color and

depth network branches, respectively; and LB and LM rep-

resent binary cross entropy loss and mean square error loss.

It is note that we assign a weight coefficient of 1.0 to all

losses.
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(a) Dynamic Guidance Map. (b) Static Guidance Map. (c) Visual Guidance Map.

Figure 2. Visualization of the generated visual guidance map. (a) The dynamic guidance map defined with Dm in the main manuscript. (b)

The static guidance map defined with Sm in the main manuscript. (c) The visual guidance map defined with Gm in the main manuscript.

Note that the deeper the color, the greater the weight.

Size 2 4 6 8 10 12

NvGesture 87.5 87.7 88.1 88.8 89.6 88.2

THU-READ 80.4 80.8 80.8 81.2 81.7 80.6

Table 1. The effect of the sliding window size.

2. Ablation Study

2.1. Impact of Sliding Window Size

In Table 1, we set different sliding window sizes in the

FRP module to study how it affects network performance.

We observe that the performance gradually improves as we

increase the size of the window. However, when the size

reaches 12, the performance of the network degrades in-

stead. We conjecture that this may be because the response

range in the dynamic guidance map has increased, and as a

result, the value of some noise regions has also been ampli-

fied simultaneously.

2.2. Study for the Robustness of Illumination

As shown in Figure 2 (a), the dynamic guidance map

Dm is inevitably influenced by illumination as it is driven

by dynamic images. To address this issue, we introduce the

static guidance map Sm, as shown in Figure 2 (b), it can

not only enhance the response value of important areas in

the image, but also significant alleviate the effects of light-

ing. After combining the dynamic guidance map and static

guidance map, the final visual guidance map, as shown in

Figure 2 (c), can effectively highlight the important areas in

the image.

2.3. Impact of Local and Global Modeling in DTN

Temporal features learning based on global contextual

information is vital for sequence. However, we find that

solely utilizing the Transformer network for global contex-

tual information modeling in the sequence is hard to gen-

erate effective motion descriptors, especially hard to cap-

ture the local subtle movement information as shown in

Figure 3 (a). To alleviate this drawback, we introduce an

(a) Global Modeling. (b) Local and Global Modeling.

Figure 3. Visualization of the Class Activation Map (CAM). (a)

The activation response of global coarse-grained temporal infor-

mation modeling. (b) The activation response of the joint model-

ing with local fine-grained as well as global coarse-grained tem-

poral information.

inception-based temporal multi-scale features learning net-

work (TMS) for local fine-grained temporal representation

learning. It first captures local hierarchical temporal fea-

tures, and then aggregates neighboring features with high

correlation. After that, we feed them into stack of Trans-

former blocks to progressively learn the global temporal

representation. As shown in Figure 3 (b), after modeling

temporal information at a local fine-grained level and global

coarse-grained level, the local and global motion perception

abilities of the network have been significantly enhanced.

2.4. Study for Feature Enhancement Attention

Figure 4 visualizes the attention map AXY (Eq.15 in

main manuscript) generated by the spatiotemporal recou-

pling module (RCM), which shows that it can selectively

activate several important neuron from X and Y directions

in captured spatial features. In addition, we can obviously

find that attention map AXY mainly guides the network to

focus on the intermediate frame, which just shows that these

intermediate frames contain most of the important informa-

tion of a sequence.

2.5. Frame Rate Study for Sub-branch

In this ablation, we configure different frame rates for

each sub-branch to understand its impact on DTN. We only



Figure 4. Visualization of the attention map for spatial feature

enhancement generated by RCM module.

fine-tune the DSN sub-network and compare models trained

for 100 epochs. As shown in Table 2, the experiment result

confirms that (1) configuring different frame rates for each

sub-branch can boost the performance, which demonstrates

that motion recognition benefits from multi-scale temporal

features. And (2) setting a smaller or larger frame rate for

DTN results in a decrease in performance, we conjecture

that the former may be caused by the loss of important in-

formation, and the latter may be caused by temporal infor-

mation redundancy.

Small

Transf.

Medium

Transf.

Large

Transf.
Nv THU

16 16 16 79.88 77.08

8 16 24 80.63 77.92

16 32 48 81.46 78.75
16 48 80 81.30 77.92

Table 2. The impact of different frame rates for each sub-branch

in DTN. “Transf.” means Transformer network.

2.6. More Comparisons

In this section, we compare with other methods not listed

in the main manuscript. Table 3 lists some other meth-

ods on the gesture datasets namely NvGesture and Chalearn

IsoGD. Table 4 lists some other methods on the action

datasets namely THU-READ and NTU-RGBD.

3. Limitations
The main limitations of the proposed method can be

summarized as follows: First, we only explored our method

on RGB-D modalities, while other modalities, such as op-

tical flow and infrared, remain to be further validated. Sec-

Method Modality Accuracy(%)

NvGesture Dataset

GPM [1] RGB 75.90

PreRNN [18] RGB 76.50

ResNeXt-101 [4] RGB 78.63

Ours RGB 89.58

ResNeXt-101 [4] Depth 83.82

PreRNN [18] Depth 84.40

GPM [1] Depth 85.50

Ours Depth 90.62

PreRNN [18] RGB+Depth 85.00

GPM [1] RGB+Depth 86.10

Ours(Multiplication) RGB+Depth 90.89

Ours(Addition) RGB+Depth 91.10

Ours(CAPF) RGB+Depth 91.70

Chalearn IsoGD Dataset

c-ConvNet [15] RGB 36.60

C3D-gesture [8] RGB 37.28

AHL [2] RGB 44.88

ResC3D [9] RGB 45.07

3DCNN+LSTM [21] RGB 51.31

attention+LSTM [20] RGB 55.98

Ours RGB 60.87

c-ConvNet [15] Depth 40.08

C3D-gesture [8] Depth 40.49

ResC3D [9] Depth 48.44

AHL [2] Depth 48.96

3DCNN+LSTM [21] Depth 49.81

attention+LSTM [20] Depth 53.28

Ours Depth 60.17

c-ConvNet [15] RGB+Depth 44.80

AHL [2] RGB+Depth 54.14

3DCNN+LSTM [21] RGB+Depth 55.29

Ours(Multiplication) RGB+Depth 66.71

Ours(Addition) RGB+Depth 66.68

Ours(CAPF) RGB+Depth 66.79

Table 3. Comparison with other methods on gesture datasets.

ond, due to the relatively heavy computation of the model,

the current version may not be suitable for mobile deploy-

ment. Therefore, making the model lightweight is the di-

rection of our future efforts.
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