
Supplementary Material for
Forward Compatible Few-Shot Class-Incremental Learning

Da-Wei Zhou1, Fu-Yun Wang1, Han-Jia Ye1†, Liang Ma2, Shiliang Pu2, De-Chuan Zhan1

1 State Key Laboratory for Novel Software Technology, Nanjing University 2 Hikvision Research Institute
{zhoudw, yehj, zhandc}@lamda.nju.edu.cn, wangfuyun@smail.nju.edu.cn, {maliang6, pushiliang.hri}@hikvision.com

1. Gradient Analysis
In the main paper, we give the analysis about L1, L2, L3,

L4 with regard to the embedding φ(x). In this section, we
give the full analysis about gradients, including the gradients
with regard to W , and the scenario where g(·) is not an
identity function.

With a bit of redundancy, we first revisit the notations
defined in the main paper. We define the model output
as fv(x) = [W,Pv]

>φ(x), where Pv = [p1, · · · ,pV] ∈
Rd×V is the collection of virtual prototypes. The output
probability after softmax operation is denoted as: a =
Softmax

(
[W,Pv]

>φ (x)
)

= [a1, · · · , a|Y0|+V]. We decou-
ple the embedding module into two parts, i.e., φ(x) =
g(h(x)).

The final loss is defined as: L = Lv + Lf , where

Lv(x, y) = `(fv(x), y)︸ ︷︷ ︸
L1

+γ ` (Mask(fv(x), y), ŷ)︸ ︷︷ ︸
L2

(1)

Lf (z) = `(fv(z), ŷ)︸ ︷︷ ︸
L3

+γ ` (Mask(fv(z), ŷ), ˆ̂y)︸ ︷︷ ︸
L4

. (2)

In Eq. 2, z is the manifold mixup instance from two different
classes, i.e., z = g [λh(xi) + (1− λ)h(xj)] , yi 6= yj . In
the following, we analyze the gradient using cross-entropy
as the loss function `(·, ·).

Following the assumption in the main paper, in the analy-
sis of gradients, we treat the classifier [W,Pv] as a unified
classifier, i.e., denote [W,Pv] = [w1, · · · ,w|Y0|+V] for ease
of discussion.

1.1. Supplementary Analysis for the Main Paper

Analyzing L1:
The optimization target of L1 corresponds to:

L1 = − log ay ,

where the output probability is defined as:

ai =
exp

(
w>i φ(x)

)∑|Y0|+V
j=1 exp

(
w>j φ(x)

) . (3)

Hence, we can obtain the negative gradient w.r.t. the
embedding φ(x):

−∇φ(x)L1 = wy −
|Y0|+V∑
i=1

aiwi . (4)

Eq. 4 indicates that optimizing L1 will push the embedding
φ(x) towards the direction of wy, and away from other
prototypes. It is the classical loss function, which helps to
acquire the classification ability and discriminability among
known classes.

We can also obtain the negative gradient w.r.t. the proto-
type wi:

−∇wiL1 =

{
(1− ai)φ(x), i = y

−aiφ(x), otherwise
. (5)

Note that ai ∈ (0, 1), which reflects the similarity between
wi and φ(x). As a result, for the prototype weight from
the ground truth label, i.e., wy, the smaller ay is, the larger
the gradient norm is. For the prototype from non-target
class, i.e., wk, k 6= y, the larger ak is, the larger the gradient
norm is. Eq. 5 means that optimizing L1 will push the class
prototype of the target class, i.e., wy towards the embedding
of φ(x), and push the non-target class prototypes away from
it. The effect of Eq. 5 is consistent with that of Eq. 4, which
helps to classify (x, y) correctly.

Analyzing L2

We denote the pseudo label assigned to x is ŷ, and L2

equals to:

L2 = − log aŷ .

Note that when calculating L2, the output probability is
masked out for the ground-truth class y, which yields:

ai =

0, i = y
exp(w>

i φ(x))∑|Y0|+V
j=1 (exp(w>

j φ(x)))−exp(w>
y φ(x))

, otherwise
.

(6)

1

Hence, we can obtain the negative gradient w.r.t. the embed-
ding φ(x):

−∇φ(x)L2 = wŷ −
|Y0|+V∑
i=1

aiwi . (7)

Eq. 7 indicates that optimizing L2 will push the embed-
ding φ(x) towards the direction of wŷ , and away from other
prototypes. As a result, we reserve the embedding space for
new classes explicitly by pushing other prototypes away to
make the model growable and forward compatible. Note
that ay = 0 and the push effect will not influence the ground
truth class y, i.e., optimizing Eq. 7 will not weaken the clas-
sification performance on known classes.

We can also obtain the negative gradient w.r.t. the proto-
type wi:

−∇wi
L2 =

{
(1− ai)φ(x), i = ŷ

−aiφ(x), otherwise
. (8)

Eq. 8 means that optimizing L2 will push the class prototype
of the target class, i.e., wŷ towards the embedding of φ(x),
and push the non-target class prototypes away from it. Note
that the probability ay is 0 for the ground truth class, and
optimizing L2 will not hurt the classification performance.
The effect of Eq. 8 is consistent with that of Eq. 7, which
helps reserve the embedding space for class ŷ explicitly
without harming the classification performance.

Analyzing L3

We denote the pseudo label assigned to z is ŷ,
where z is the product of manifold mixup, i.e., z =
g [λh(xi) + (1− λ)h(xj)] , yi 6= yj . Similar to the assump-
tion made in the main paper, we assume g(·) is identity
function and h(x) = φ(x). We analyze the scenario when
g(·) is not identity in Sec. 1.2. L3 equals to:

L3 = − log aŷ ,

where output probability on class m is defined as:

am =
exp

(
w>mz

)∑|Y0|+V
k=1 exp

(
w>k z

) . (9)

Hence, we can obtain the negative gradient w.r.t. the mixed
embedding z:

−∇zL3 = wŷ −
|Y0|+V∑
k=1

akwk . (10)

Eq. 10 indicates that optimizing L3 will push the embedding
z towards the direction of wŷ, and away from other proto-
types. Since z is a generated virtual instance, we reserve the
embedding space for new classes explicitly by pushing other

prototypes away to make the model provident and forward
compatible.

We can also obtain the negative gradient w.r.t. the proto-
type wk:

−∇wk
L3 =

{
(1− ak)z, k = ŷ

−akz, otherwise
. (11)

Eq. 11 means that optimizing L3 will push the class proto-
type of the target class, i.e., wŷ towards the embedding of
z, and push the non-target class prototypes away from it.
The effect of Eq. 11 is consistent with that of Eq. 10, which
helps reserve the embedding space for class ŷ explicitly by
instance mixture.

Apart from the gradient w.r.t. the embedding z, we also
provide that for φ(xi) and φ(xj):

−∇φ(xi)L3 = −λ∇zL3

= λ

wŷ −
|Y0|+V∑
k=1

akwk


−∇φ(xj)L3 = −(1− λ)∇zL3

= (1− λ)

wŷ −
|Y0|+V∑
k=1

akwk

 ,

(12)

which indicates that the embedding of mixup components
φ(xi) and φ(xj) will be pushed towards the prototype wŷ,
and away from other prototypes. Eq. 12 is similar to Eq. 7,
which reserves the embedding space for new classes and
make the model forward compatible.

Analyzing L4

The analysis of L4 is similar to that of L3. Assume the
pseudo label assigned to the masked probability is ˆ̂y, L4 is
defined as:

L4 = − log aˆ̂y ,

where the output probability for class m is defined as:

am =

0, m = ŷ
exp(w>

mz)∑|Y0|+V

k=1 (exp(w>
k z))−exp(w>

ŷ z)
, otherwise

.

(13)

Similarly, we have the negative gradient w.r.t. the manifold
mixup product z:

−∇zL4 = wˆ̂y −
|Y0|+V∑
k=1

akwk . (14)

The negative gradient w.r.t. the classifier weight yields:

−∇wk
L4 =

{
(1− ak)z, k = ˆ̂y

−akz, otherwise
. (15)

The negative gradient w.r.t. the mixup components yields:

−∇φ(xi)L4 = −λ∇zL4

= λ

wˆ̂y −
|Y0|+V∑
k=1

akwk


−∇φ(xj)L4 = −(1− λ)∇zL4

= (1− λ)

wˆ̂y −
|Y0|+V∑
k=1

akwk

 ,

(16)

To summarize, when considering L4, the final loss func-
tion becomes symmetric. The effect of L4 is similar to that
of L1. Since L2 and L3 both reserve the embedding space
for new classes and squeeze the space of known ones, we
seek to trade-off between the squeeze process and avoid
over-squeezing with such symmetric loss form. The abla-
tions in the main paper validate the effectiveness of such
regularization.

1.2. When g(·) is not Identity

In the former part and main paper, we analyze the gradi-
ents of L3 and L4 by assuming g(·) is the identity function.
In this section, we analyze a more general scenario where
g(·) is not identity. We first analyze the liner situation and
then analyze the nonlinear situation. Note that the gradients
of L3 and L4 are similar, and we only give the gradients of
L3 as an example.

1.2.1 g(·) is Linear

Following the former analysis, if g(·) is a linear layer, we can
parameterize it as V, and we have φ(x) = V>h(x). Denote
the mixed instance at middle layer as b = λh(xi) + (1 −
λ)h(xj), then z = g(b) = V>b indicates the embedding
of mixed instance. Hence, the output probability for mixed
instance on class m is defined as:

am =
exp

(
w>mV>b

)∑|Y0|+V
k=1 exp

(
w>k V

>b
) .

We can obtain the negative gradient w.r.t. the final embed-
ding of mixed instance g(b):

−∇g(b)L3 = wŷ −
|Y0|+V∑
k=1

akwk , (17)

which is same to Eq. 10. The gradients indicate that opti-
mizing L3 will reserve the embedding space for class ŷ by
moving V>b towards wŷ, and away from other prototypes.

We can further obtain the negative gradients w.r.t. b:

−∇bL3 = −V∇g(b)L3

= V

wŷ −
|Y0|+V∑
k=1

akwk

 ,
(18)

which indicates that the pushing effect also works in the
middle layer (i.e., the output layer of h(x)), encouraging
the feature reserving in the same direction as the last layer.
Eq. 18 verifies that the reserving process works from shal-
low to deep, which makes forward compatibility maintained
holistically. Then we get the negative gradients w.r.t. the
mixup components h(xi) and h(xj):

−∇h(xi)L3 = λV

wŷ −
|Y0|+V∑
k=1

akwk



−∇h(xj)L3 = (1− λ)V

wŷ −
|Y0|+V∑
k=1

akwk

 .

The conclusions are consistent with Eq. 12, which only adds
an extra term in the gradient direction, and we can infer that
even g(·) is a linear classifier, the forward compatibility is
still maintained with L3.

1.2.2 g(·) is Nonlinear

Under a more common scenario, we assume g(·) is nonlinear
(e.g., by a neural network block), and we have:

am =
exp

(
w>mg(b)

)∑|Y0|+V
k=1 exp

(
w>k g(b)

) .
Similarly, we have the negative gradients w.r.t. the embed-
ding g(b):

−∇g(b)L3 = wŷ −
|Y0|+V∑
k=1

akwk . (19)

The negative gradient w.r.t. the mixed instance b can be
obtained via:

−∇bL3 =− (∇bJ)>∇g(b)L3

=(∇bJ)>

wŷ −
|Y0|+V∑
k=1

akwk

 ,
(20)

where∇bJ is the Jacobian matrix of g(b) w.r.t. b. Suppose
that (∇bJ)

>
wŷ are pointing to similar directions (e.g., with

a high cosine similarity), then the conclusion above still

holds. Similarly, we have the negative gradient w.r.t. the
mixup components h(xi) and h(xj):

−∇h(xi)L3 = λ(∇bJ)>

wŷ −
|Y0|+V∑
k=1

akwk



−∇h(xj)L3 = (1− λ)(∇bJ)>

wŷ −
|Y0|+V∑
k=1

akwk

 .

The conclusions are consistent with Eq. 12, and we can
infer that even g(·) is not a linear classifier, the forward
compatibility is still maintained with L3. To conclude, L3

enhances the forward compatibility holistically.

2. Degradation Form of FACT

In this section, we give another inference form of FACT,
which adopts another form of assumption and can be seen as
a degradation form of FACT. With a bit of redundancy, we
start from the law of total probability:

p (yi|φ(x)) = p(wi|φ(x))

=
∑

pv∈Pv

p(wi|pv, φ(x))p(pv|φ(x)) , (21)

where p(pv|φ(x)) =
exp(pv

>φ(x))∑
pv∈Pv

exp(pv
>φ(x))

. Eq. 21 implies
that we can consider the possible influence of all infor-
mative virtual prototypes to get the final prediction. We
still assume p (φ(x)|wi,pv) = ηN (φ(x)|wi,Σ) + (1 −
η)N (φ(x)|pv,Σ), which follows a Gaussian mixture distri-
bution. According to Bayes’ Theorem, we have:

p(wi|pv, φ(x)) =
p(φ(x)|wi,pv)p(wi|pv)∑|Yb|
j=1 p(φ(x)|wj ,pv)p(wj |pv)

,

where |Yb| is the number of classes seen before. In the main
paper, we argue that p(wi|pv) reflects the similarity between
wi and pv, and assume it follows a Gaussian distribution.
However, we can also treat it as the class prior given virtual
class, which can be discarded by assuming all classes follow
a uniform distribution in few-shot class-incremental learning.
Hence, We have:

p(wi|pv, φ(x)) =
p(φ(x)|wi,pv)∑|Yb|
j=1 p(φ(x)|wj ,pv)

=
ηn(wi) + (1− η)n(pv)

η
∑|Yb|
j=1 n(wj) + (1− η)|Yb|n(pv)

,

(22)

where n(w) = exp
((

Σ−1w
)>
φ(x)− 1

2w
>Σ−1w

)
.

When w and p are normalized, Σ = I, η = 1, Eq. 22

degrades into:

p(wi|pv, φ(x)) =
exp

(
w>i φ(x)

)∑|Yb|
j=1 exp

(
w>j φ(x)

) ,
which means the probability is irrelevant to the virtual proto-
type pv . Hence, Eq. 21 turns into:

p (yi|φ(x)) =
∑

pv∈Pv

p(wi|pv, φ(x))p(pv|φ(x))

=
exp

(
w>i φ(x)

)∑|Yb|
j=1 exp

(
w>j φ(x)

) . (23)

It degrades into ProtoNet (as discussed in Section 3.2 of the
main paper), where we only consider the influence of known
class prototypes and ignore the possible influence of virtual
prototypes. However, in our ablation study (c.f. Section 5.3
of the main paper), we find that when training the model
with the same loss function, the inference performance of
our FACT is better than ProtoNet. It validates that the classifi-
cation ability is encoded into these virtual prototypes, which
can differentiate among all known classes and help build a
stronger classifier.

3. Introduction about Compared Methods
In this section, we give a detailed introduction about the

compared methods adopted in the main paper. They are
listed as:

• Finetune: when facing the few-shot incremental ses-
sion, it simply optimizes the cross-entropy over these
few-shot items. It easily suffers catastrophic forgetting.

• iCaRL [8]: when training an incremental new task,
it combines cross-entropy loss with knowledge distil-
lation loss together. The knowledge distillation part
can help the model maintain discrimination ability over
former learned knowledge.

• Pre-Allocated RPC [6]: it is a class-incremental learn-
ing method based on data rehearsal. It first pre-allocates
all the classifiers on a regular polytope and then opti-
mizes the embedding of new classes to fit these pre-
allocated classifiers. However, since FSCIL tasks do
not save exemplars for rehearsal, we can only use the
few-shot dataset to optimize the embedding.

• EEIL [1]: considers an extra balanced fine-tuning pro-
cess over iCaRL, which uses a balanced dataset to fine-
tune the model and alleviate bias.

• Rebalancing [3]: uses cosine normalization, feature-
wise knowledge distillation and contrastive learning to
augment the model and resist catastrophic forgetting.

Table 1. Comparison with the state-of-the-art on CIFAR100 dataset. We report the results of compared methods from [9] and [12]. FACT

outperforms the runner-up method by 2.96% in terms of the last accuracy, by 1.43% in terms of the performance decay.

Method Accuracy in each session (%) ↑ PD ↓ Our relative

0 1 2 3 4 5 6 7 8 improvement

Finetune 64.10 39.61 15.37 9.80 6.67 3.80 3.70 3.14 2.65 61.45 +38.95
Pre-Allocated RPC [6] 64.50 54.93 45.54 30.45 17.35 14.31 10.58 8.17 5.14 59.36 +36.86
iCaRL [8] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 50.37 +27.87
EEIL [1] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 48.25 +25.75
Rebalancing [3] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 50.56 +28.06
TOPIC [9] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 34.73 +12.23
Decoupled-NegCosine [4] 74.36 68.23 62.84 59.24 55.32 52.88 50.86 48.98 46.66 27.70 +5.20
Decoupled-Cosine [10] 74.55 67.43 63.63 59.55 56.11 53.80 51.68 49.67 47.68 26.87 +4.37
Decoupled-DeepEMD [11] 69.75 65.06 61.20 57.21 53.88 51.40 48.80 46.84 44.41 25.34 +2.84
CEC [12] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 23.93 +1.43

FACT 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10 22.50

Table 2. Comparison with the state-of-the-art on miniImageNet dataset. We report the results of compared methods from [9] and [12]. FACT

outperforms the runner-up method by 2.86% in terms of the last accuracy, by 2.30% in terms of the performance decay.

Method Accuracy in each session (%) ↑ PD ↓ Our relative

0 1 2 3 4 5 6 7 8 improvement

Finetune 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.60 1.40 59.91 +37.84
Pre-Allocated RPC [6] 61.25 31.93 18.92 13.90 14.37 15.57 16.15 12.33 12.28 48.97 +26.90
iCaRL [8] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 44.10 +22.03
EEIL [1] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58 41.73 +19.66
Rebalancing [3] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 47.14 +25.07
TOPIC [9] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 36.89 +14.82
Decoupled-NegCosine [4] 71.68 66.64 62.57 58.82 55.91 52.88 49.41 47.50 45.81 25.87 +3.80
Decoupled-Cosine [10] 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63 24.74 +2.67
Decoupled-DeepEMD [11] 69.77 64.59 60.21 56.63 53.16 50.13 47.79 45.42 43.41 26.36 +4.29
CEC [12] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 24.37 +2.30

FACT 72.56 69.63 66.38 62.77 60.6 57.33 54.34 52.16 50.49 22.07

• TOPIC [9]: tailors few-shot class-incremental learning
task with neural gas network. It preserves the topology
of the feature manifold formed by different classes.

• Decoupled-DeepEMD [11]: decouples the training
process of embedding and classifier. After the embed-
ding training process of the base session, it replaces the
classifier of each class with the mean embedding of this
class. When learning a new session, the same classifier
replacement process is adopted for every new class. It
adopts a DeepEMD distance [11] calculation between
classifier and incoming queries during inference.

• Decoupled-Cosine [10]: Similar to Decoupled-
DeepEMD, it decouples the training process of em-
bedding and classifier. It adopts a cosine distance [10]
calculation during inference.

• Decoupled-NegCosine [4]: Similar to Decoupled-
Cosine, it decouples the training process of embedding
and classifier. The difference between it and Decoupled-
Cosine is that it uses a negative margin softmax func-
tion during model pretraining. It adopts a cosine dis-
tance [10] calculation during inference.

• CEC [12]: trains an extra graph model during base ses-
sion with pseudo-incremental learning sampling. The
graph model learns to adapt the embeddings of old class
prototypes and new class prototypes, and such ability
is generalizable to the incremental learning process.

Note that iCaRL, EEIL, Pre-Allocated RPC, and Rebal-
ancing are traditional class-incremental algorithms. Our
empirical experiments in the main paper indicate that these
classical class-incremental methods are unsuitable for few-
shot class-incremental learning scenarios. For other SOTA

methods of FSCIL, our proposed FACT consistently outper-
forms them by vast performance measures.
Discussion about related compatible training methods:
Some other works aim to build a compact embedding
space [13], which can be seen as enhancing forward com-
patibility implicitly. For example, [14] seeks to detect new
classes by learning placeholders, [5] utilizes the embedding
with large margin between classes, [7] encourages class-wise
orthogonality for more compact embedding. These works,
however, have a different goal from ours. Their ultimate
goal is to obtain a compact embedding, which facilitates the
one-stage or in-domain performance in anomaly detection or
classification. By contrast, our training scheme aims to build
an embedding that enhances performance in the future. In
other words, we propose forward compatibility to tailor the
characteristics of FSCIL with multiple tasks. Besides, there
are other differences between ours and [14]. For example,
we use a symmetric loss to balance the learning and reserv-
ing process, which is consistent with forward compatibility
and proven efficient. Besides, we use the class prototype (av-
erage mean) as the classifier, which benefits the embedding
learning process in FSCIL. Lastly, the former learned virtual
prototypes are utilized during inference to boost forward
compatibility, instead of dropped directly. There are other
methods addressing virtual classes, e.g., [2]. However, the
setting in [2] is different from ours, where extra semantic
information are available to synthesis new classes directly.

Pre-Allocated RPC and Decoupled-NegCosine can be
viewed as encouraging forward compatibility. The former
pre-assigns the classifier for new classes but lacks the ability
for classifier matching in FSCIL process. The latter con-
siders preventing new class embedding from being harmed
by using a negative margin. However, they are validated
ineffective in the FSCIL setting, verifying the effectiveness
of our prospective training paradigm.

4. Detailed Incremental Performance
In the main paper, we show the incremental performance

on benchmark datasets, and report the detailed accuracy
of CUB200. We report the incremental performance on the
other benchmark datasets, i.e., CIFAR100 and miniImageNet
in Table 1 and Table 2. We can infer that our proposed FACT
has the better top-1 accuracy and lower performance decay,
indicating FACT forgets lower than other state-of-the-art
methods. These conclusions are consistent with the main
paper, verifying the best performance of FACT.

References
[1] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil,

Cordelia Schmid, and Karteek Alahari. End-to-end incremen-
tal learning. In ECCV, pages 233–248, 2018. 4, 5

[2] Yu-Ying Chou, Hsuan-Tien Lin, and Tyng-Luh Liu. Adaptive
and generative zero-shot learning. In ICLR, 2020. 6

Algorithm 1 Forward Compatible Training for FSCIL

Input: Base dataset: D0, Virtual class number: V ;
Output: W,Pv , φ(·);

1: Randomly initialize W,Pv , φ(·);
2: repeat
3: Get a mini-batch of training instances: {(xi, yi)}ni=1;
4: Calculate the virtual loss Lv;
5: Randomly shuffle the dataset, denoted as {(xj , yj)}nj=1;
6: Mask out same class instances in (xi,xj);
7: Calculate the forecasting loss Lf ;
8: Get the total loss L = Lv + Lf ;
9: Obtain derivative and update the model;

10: until reaches predefined epoches

[3] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In CVPR, pages 831–839, 2019. 4, 5

[4] Bin Liu, Yue Cao, Yutong Lin, Qi Li, Zheng Zhang, Ming-
sheng Long, and Han Hu. Negative margin matters: Under-
standing margin in few-shot classification. In ECCV, pages
438–455, 2020. 5

[5] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang.
Large-margin softmax loss for convolutional neural networks.
In ICML, 2016. 6

[6] Federico Pernici, Matteo Bruni, Claudio Baecchi, Francesco
Turchini, and Alberto Del Bimbo. Class-incremental learning
with pre-allocated fixed classifiers. In ICPR, pages 6259–
6266, 2021. 4, 5

[7] Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat,
Salman Khan, and Fahad Shahbaz Khan. Orthogonal projec-
tion loss. In ICCV, pages 12333–12343, 2021. 6

[8] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl,
and Christoph H Lampert. icarl: Incremental classifier and
representation learning. In CVPR, pages 2001–2010, 2017. 4,
5

[9] Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong,
Xing Wei, and Yihong Gong. Few-shot class-incremental
learning. In CVPR, pages 12183–12192, 2020. 5

[10] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
NIPS, 29:3630–3638, 2016. 5

[11] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
Deepemd: Few-shot image classification with differentiable
earth mover’s distance and structured classifiers. In CVPR,
pages 12203–12213, 2020. 5

[12] Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan,
and Yinghui Xu. Few-shot incremental learning with continu-
ally evolved classifiers. In CVPR, pages 12455–12464, 2021.
5

[13] Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Co-transport
for class-incremental learning. In ACM MM, pages 1645–
1654, 2021. 6

[14] Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Learning
placeholders for open-set recognition. In CVPR, pages 4401–
4410, 2021. 6

