RIDDLE: Lidar Data Compression with Range Image Deep Delta Encoding
Supplementary Material

Xuanyu Zhou® Charles R. Qi*

Yin Zhou Dragomir Anguelov

Waymo LLC

A. Overview

In this supplementary, we provide more details of our
method, extra analysis experiment results and visualiza-
tions. In Sec. B, we describe more details of the deep pre-
dictive model, including its network architecture, losses and
its training process as well as more explanation of the input
data transformations. In Sec. C, we provide more analysis
experiment results on model latency, effects of the entropy
encoder choices and effects of the context sizes. In Sec. D,
we apply our method to compress lidar data attributes be-
yond the range values. Finally, in Sec. E, we provide more
visualizations of our model’s predictions.

B. Details of the Predictive Models

Model architecture For deep prediction model, we adapt
the structure of PointNet [6]. Details of layers are visualized
in Fig. 1. To reduce the latency, the network channel sizes
are halved compared to the original architecture and the T-
Nets are removed. After concatenation of global and lo-
cal features, we split the network into anchor-classification
branch and residuals branch. Each branch is a MLP with
layer sizes [128, 64, # of anchors], where # of anchors is
99 for intra-prediction model and 199 for temporal model.
For temporal model, We build the KDtrees using neigh-
bors.NearestNeighbors method by Scikit-learn library. We
use the left valid depth and up valid depth as estimates to
each query 50 points from the last frame as the temporal
context.

Loss functions At training time, we train deep prediction
model end-to-end with the anchor classification and the an-
chor residual regression loss. We weight the classification
loss by a weight.

»C - ’y»cclassiﬁcatiun + »Cregression (1)

The classification loss is a cross-entropy loss across hw — 1
classes for intra-frame prediction model and hw — 1 + m

*equal contribution

classes for temporal model. The ground truth class is se-
lected as the index of the pixel with the closest distance to
the to-be-predicted pixel. As the input are quantized values,
there could be ties. To avoid ties we add a bias term to the
distances to favor the pixels that are closer in angles (abso-
lute delta azimuth + absolute delta elevation) to the to-be-
predicted pixel. The regression loss is a L1 loss between the
predicted residual corresponding to the pixel of the ground
truth anchor and the ground truth residual of that pixel.

Training We learn the weights of the prediction model
by training on the range images from the Waymo Open
Dataset train set. We randomly crop the patches of shape
10 x 10 from the range images and train the deep network
with batch size 128 and an Adam optimizer. We use loss
weight v = 0.01. The initial learning rate is 0.00005, and
we decay learning rate by 10x at step 1500k and step 3000k.
We normalize the range values to [0, 1] by dividing them by
75m. To mimic the same setting in decoding, the training
inputs are quantized. The ground truth attribute values are
in full precision for more accurate supervision. For pixel
locations at the boundary of the range images, we enforce
the same patch size via zero padding.

There are two strategies for inputs quantization. The first
strategy is to train different models for different quantiza-
tion precisions, and for each model we use a fixed quanti-
zation precision for the input. The second strategy is us-
ing mixed precisions to quantize the input during training.
Specifically, we uniformly sample a quantization precision
for a given input from 0.0001 to 0.5000 with sample bin
size of 0.0001. By the second strategy, we only need to train
one model for different compression rates. From our exper-
iments, we observe that the second strategy won’t harm the
compression rates at individual quantization precision.

Baselines For the previous valid value method, we predict
the attribute I; ; at row i, column j to be fi,j =1 ;4 if
IZ(’ ;j—1 1s a valid pixel (not void due to empty laser return)
else repeatedly decrement j by 1 until the pixel is valid. For

the linear interpolation baseline method, we predict I; ; =

mip (32, 32, 32)~. mlp (64, 512)

== ==
] 1 & '
Z| shared | #| shdred nx512

max

pool 512
—
global feature

mlp (256, 128)
I ——

shared

anchor probs.

k544

nx128

>

anchor residuals

Figure 1. Deep predictive model architecture. n is the number of context points, d is the input point dimension (d = 3 for the intra-

prediction model, d = 4 for the temporal model).

Il iy + 1y ; — Iy j_q. For the 12-layer CNN method,
we adapt a similar structure as ResNet [3]. The network is
composed of two convolutional layers (channel sizes 64, 32)
and 5 residual blocks (channel sizes 32, 32 for each block),
and all convolutional layers have filter size 3x3.

C. More Analysis

Analysis of the model latency. Table 3 shows the la-
tency comparison between our method and OctSqueeze [4]
and G-PCC from MPEG. To achieve faster decompression
speed, during compression, we split a range image into
smaller blocks and run compression in parallel on these
blocks. During decompression, we decode in parallel on
these smaller blocks. Our experiments show that if we split
a 64 by 2650 range image into 212 blocks with size 16 by
50, the bitrate would only increase by 0.5%, which is nearly
negligible. If we split it into 424 blocks with size 16 by
25, the bitrate would increase by 5.13%. Table 3 shows
the latency of our method by splitting into blocks with size
16 by 26 during decoding. We benchmark our method on
NVIDIA Tesla V100 GPU. Our deep model is accelerated
by TensorRT with floatl6 quantization. Operations (en-
tropy encoding) other than model inference is written in
C++. The latency of G-PCC is benchmarked on CPU using
MPEG’s implementation (github.com/MPEGGroup/mpeg-
pcc-tmcl3). The latency of OctSqueeze (depth 16) is
from the original paper [4]. Moreover, we believe further
speedup of our method could be achieved by methods like
predicting multiple pixels at a time or shared point embed-
ding for streamed prediction.

Choices of entropy encoder After the predictive delta en-
coding, we get a residual map of the range image. An en-
tropy encoder is used to leverage the sparsity pattern in the
residual map to compress it. Given an accurate prediction
model, most of the residuals would be zero. In addition,
as shown in Fig. 2, larger quantization steps would round
more residuals to zero, thus the residuals would become
more sparse. We adapted two methods to entropy encode

entropy encoder quantization bpp
sparse repre. + arithmetic encoding 0.1m 2.28
varints+LZMA 0.1m 2.33
huffman encoding 0.1m 249
arithmetic encoding 0.1m 241
sparse repre. + arithmetic encoding 0.02m 4.17
varints+LZMA 0.02m 4.08
huffman encoding 0.02m 4.25
arithmetic encoding 0.02m 4.21

Table 1. Ablation study of the entropy encoders.

the residuals. In practice, we can select the entropy encoder
with the highest compression rates depending on the quan-
tization rates and the predictor.

The first method is to represent the residuals using sparse
representation. Given an array of residuals, we represent
the array with the values of nonzero residuals and their in-
dices in the array. For a long run of sparse residuals, the
sparse representation would be quite memory efficient. Af-
ter obtaining the sparse representation of residuals, we use
arithmetic encoding to further reduce its size.

The second method is to represent the residuals using
run-length encoding. We first flatten the residual map to
a vector and then represent it with the values and the run-
length of values. This representation achieves better com-
pression rates when the residuals are not that sparse, i.e.
when quantization step size is small. After obtaining the
run-length representation, we use LZMA compressor to fur-
ther reduce its size.

Table. 1 shows that different entropy encoders have dif-
ferent compression rates of the residuals. For quantization
precision of 0.1m, the residuals are more sparse, and the
compression rate of using sparse representation (represent-
ing non-zero residuals by specifying their row, col index
and the residual values) with arithmetic encoding is higher
than varints with LZMA. However, for quantization preci-
sion of 0.02m, the compression rate of varints with LZMA

method compressing (ms) decompressing (ms)

G-PCC [2] 1594.5 1052.1
OctSqueeze [4] 106.0 902.3
RIDDLE (ours) 532.51 966.3

Table 2. Latencies of lidar data compression methods. Note
the G-PCC is evaluated using CPU on the Waymo Open Dataset
(WOD). OctSqueeze is evaluated on the KITTI dataset (with a
similar range image resolution to WOD) and our method is evalu-
ated on the WOD. Both OctSqueeze and our method use GPU for
model inference.

preprocessing (ms) network (ms) entropy encoding (ms)
16.23 4874 28.88

Table 3. Breakdown of encoding time of RIDDLE. Preprocess-
ing includes the time to compute and compress a binary mask in-
dicating whether a pixel is a valid return in the range image. Net-
work refers to the model prediction time. Entropy encoding refers
to the time used by entropy encoder.

is higher, due to the decrease of zero residuals.

Analysis on input choices. Table 4 shows how the input
choices affect the prediction accuracy. Instead of inputing
intra-frame context of 10 by 10 (minus the bottom right
one), we can just input the up 9 pixels (row 1), the right
9 pixels (row 2) or smaller context size (row 4). We can see
that enlarging the receptive field of input with context from
both upper left and upper right can improve the prediction
accuracy (row 3 v.s. row 1 and 2). Moreover, including az-
imuth and inclination as additional input attributes can also
improve the predictor (row 4 v.s. row 3) compared to just
using the relative row/column indices as input.

Generalization of the method. When we apply the deep
predictive model trained on 64-beam frames on the Waymo
Open Dataset directly to the subsampled 32-beam frames,
it achieves 2.55 bpp at 0.1m depth precision (only slightly
larger than 2.23 bpp on 64-beams). In addition, the com-
pressor trained on WOD can apply well in KITTI (Fig. 5),
which shows the generalization of it.

Comparison with LASzip. Benchmarked on Waymo
Open Dataset, LASzip [5] has 67.6 PSNR and 0.0048
Chamfer Distance at 10.62 bpp. Our method achieves 72.39
PSNR and 0.0026 Chamfer Distance at 4.51 bpp, which
clearly outperforms it.

context size input format acc. @0.1m
10x 1 (Aazimuth, Ainclination, depth) 37.53
1 x10 (Aazimuth, Ainclination, depth) 60.00
5 x10 (Arow index, Acol index, depth) 65.02
5 x10 (Aazimuth, Ainclination, depth) 65.21
10x 10 (Aazimuth, Ainclination, depth) 65.75

Table 4. Effects of context size and input format. We used the
intra-frame model for this evaluation.

D. Compression of More Attributes

Since a lidar point cloud may contain additional at-
tributes (e.g. intensity, elongation) than the range values,
in this section we show how much we can compress the
other attributes than ranges. We train a network to take in
multi-channel range images and output multi-channel pre-
diction. Specifically, we train a network on the Waymo
Open dataset, which contains 3 channels for each point:
range, intensity and elongation. The network is modified
to have 3 anchor-classification branches and 3 residuals
branches for 3 attributes. From Table 5 row 1-4, we can
see that a quantization precision 0.02m for range, or 0.1 for
intensity, or 0.1 for elongation have similiar effect on the
object detector. With those quantization precisions for each
attributes, range values account for most of the storage cost
(4.04 bpp) compared to the other two (0.88 bpp for intensity
and 0.78 bpp for elongation).

E. More Visualizations

The distributions of residuals Fig. 2 shows the distribu-
tion of the range residual maps after our deep delta encoding
step. We can see that the larger the quantization interval the
more concentrated are the residuals (lower entropy), which
explains the lower bitrate after the compression. Note that
for a quantization size of 0.1m, more than 70% of the pre-
diction has zero error compared to the ground truth quan-
tized range image.

Auto-encoder-based compression We further compare
our method with an auto-encoder-based image compression
algorithm [1]. 7 = max,, c p minj;||p; — p;||2. The auto-
encoder is trained with a learning rate of 0.0001 and an
Adam optimizer. The range values are scaled to [0, 1] by
75m instead of by 255 as for RGB images. Fig. 3 shows
the reconstructed point clouds of the auto-encoder-based
method and our method under similar bitrates. The colors of
points in the visualizations demonstrate that our method has
much better reconstruction quality compared to this auto-
encoder baseline. The auto-encoder-based range image
compression method does poorly especially at the bound-
ary between foreground points and background points.

 precision . .blt pet point . total bpp | vehicle mAP pedestrian mAP
range intensity elongation | range intensity elongation
- - - 32 32 32 96.00 69.59 65.62
0.02m - - 4.04 32 32 68.04 69.60 65.63
- 0.1 - 32 0.88 32 64.88 69.59 65.84
- - 0.1 32 32 0.78 64.78 69.59 65.62
0.02m 0.1 0.1 4.04 0.88 0.78 5.70 69.59 65.62

Table 5. Effects of context size and input format. The uncompressed attribute is saved as 32-bit float numbers. We that quantizing the
intensity or elongation to 0.1 or quantizing the range value to 0.02m has little impact on the detection mAPs. At these selected quantization
rates, the range channel accounts for most of the bpp (around 70%).

o o =]
~ W w
] a vl

o
]
=1
=

Percentage
Percentage
Percentage

=) =]
5]]
i

o
=1
[l

07 08
s 07
06
0s
05
0
04
o
03
02
02
I I) I I N
000 _-.I I.- _____ 00 - - 00 _I I_
00 01 0s 00 0s 0 1

02 -0.1 02 -10 — 10 -2 -1
Residual Residual Residual

(a) Residuals distribution (0.02m) (b) Residuals distribution (0.1m) (c) Residuals distribution (0.2m)

Figure 2. Distribution of residuals at different quantization precisions. Proposed deep prediction model is able to accurately model the
joint distributions of range image pixel attributes, resulting in a concentrated distribution of residuals with low entropy.

Groundtruth (32bpp) Ours (2.19bpp) Autoencoder (2.20bpp)

0.00 26.46 52.91 79.37 105.83 132.29 158.74 185.20 211.66 23811 mm

Figure 3. Visualization of reconstructed point clouds, colored by per point Chamfer distance (error bar colormap on the bottom).
From left to right: raw, RIDDLE (ours) and auto-encoder. It is clear that our method, under the same bit per point, has mush less distortion.
Best viewed in color with zoom in.

References

(1]

(2]

(3]

(4]

(3]

(6]

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. arXiv preprint arXiv:1802.01436,
2018. 3

D Graziosi, O Nakagami, S Kuma, A Zaghetto, T Suzuki,
and A Tabatabai. An overview of ongoing point cloud com-
pression standardization activities: video-based (v-pcc) and
geometry-based (g-pcc). APSIPA Transactions on Signal and
Information Processing, 9, 2020. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770-778, 2016. 2

Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu, and
Raquel Urtasun. Octsqueeze: Octree-structured entropy
model for lidar compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1313-1323, 2020. 2, 3

Martin Isenburg. Laszip: lossless compression of lidar data.
Photogrammetric Engineering Remote Sensing, 79, 02 2013.
3

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 652-660, 2017. 1

	. Overview
	. Details of the Predictive Models
	. More Analysis
	. Compression of More Attributes
	. More Visualizations

