
Code

1. Prerequisites
1.1. Environment

Please set up the environment as follows: tensorflow ==
1.14.0, numpy == 1.20.1 and python == 3.7.1.

1.2. Datasets

Before running the codes, you need to download all
the datasets from their corresponding links provided in the
following. For the OoD test sets, we directly use the ones
officially released by [2] in their repository in Github.

CIFAR-10: http://www.cs.toronto.edu/ kriz/cifar.html
CIFAR-100: http://www.cs.toronto.edu/ kriz/cifar.html
OoD datasets: https://github.com/ShiyuLiang/odin-pytorch

2. Running
2.1. Benchmarks and Robustness Exploration

The codes necessary for replicating our experi-
mental results in benchmark and robustness explo-
ration are placed in ’Code LSR/Method/’. The de-
fault model architecture is the Wide-ResNet-28-10 pro-
vided in https://github.com/akshaymehra24/WideResnet.
To use Dense-BC please manually replace the Wide-
ResNet-28-10 with the implementation of Dense-BC in
https://github.com/taki0112/Densenet-Tensorflow. After
downloading the datasets, please transform them into the
format of TF-record by running:

python Make tfrecord.py

Here, we only provide the one to transform CIFAR-10.
To transform CIFAR-100 and OoD datasets into the same
organized TF-record, you only need to do slight modifica-
tions on this script. Next, to train the classifier serving as
AV feature extractor, please directly run:

python Train CIFAR10.py

Next, run the following command to train the OoD de-
tection module of the proposed method:

python Train CIFAR10 OOD.py

Please run ’Evaluator CIFAR10.ipynb’ box by box to re-
produce the results in Benchmark experiments. As for the
results in robustness exploration, please simply modify the
number of layer channels of classifier in above codes.

2.2. Ablation Study

Codes for replicating our experimental results in abla-
tion study are placed in ’Code LSR/Ablation study/’. Af-
ter downloading all the datasets, please transform them into
the format of TF-record by modifying ’Make tfrecord.py’.
For the experimental results of latent space autoregres-
sion [1], we directly use the code officially released in
https://github.com/aimagelab/novelty-detection. For the re-
maining models in ablation study, please first train an clas-
sifier using:

python Train CIFAR100.py

Next, for the model of column 2nd and 3rd in Table.3 in
main paper, please run

python autoregressor AV feature CIFAR100.py

’Evaluator autoregressor AVfeature.ipynb’ is the corre-
sponding evaluation script. A box-by-box running of it will
show all the experimental results in column 3rd. For the
results in column 2nd, please modify this script of assess-
ing reconstruction accuracy by normalized L2 distance to
L2 distance.

For the results in column 4th, please run ’Evalua-
tor CE AVfeature.ipynb’ and ’CE AVfeature CIFAR100.p
y’ in a similar way as above. The results in column 5th and
6th can be obtained by running the codes for benchmark.

References
[1] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara. Latent

space autoregression for novelty detection. 2018. 1
[2] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing

the reliability of out-of-distribution image detection in neural
networks. arXiv preprint arXiv:1706.02690, 2017. 1

1


	. Prerequisites
	. Environment
	. Datasets

	. Running
	. Benchmarks and Robustness Exploration
	. Ablation Study


