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This document provides more details of our approach
and additional experimental results, organized as follows:

• §S1: Description of large-vocabulary datasets
• §S2: Pseudo-code of online clustering algorithm
• §S3: Additional experimental results
• §S4: More in-depth discussions

S1. Large-Vocabulary Dataset Description
First, we present the details of the datasets used for the

study of large-vocabulary semantic segmentation (§5.3). In
particular, the study is based on ADE20K-Full [19], which
contains 25K and 2K images for train and val, respec-
tively. It is elaborately annotated in an open-vocabulary
setting with more than 3,000 semantic concepts. Follow-
ing [3], we only keep the 847 concepts that are appear-
ing in both train and val sets. Then, for each vari-
ant ADE20K-x in Table 4, we choose the top-x (x ∈
{300, 500, 700, 847}) classes based on their appearing fre-
quencies. Note that for ADE20K-150, we follow the default
setting in the SceneParse150 challenge to use the specified
150 classes for evaluation.

S2. Online Clustering Algorithm
Algorithm 1 provides a pseudo-code for our online clus-

tering algorithm to solve Eq. 9. The algorithm only includes
a small number of matrix-matrix products, and can run effi-
ciently on a GPU card.

S3. More Experimental Result
S3.1. Quantitative Result on Cityscapes test

Table S1 reports the results on Cityscapes test. All the
models are trained on train+val sets. Note that we do
not include any coarsely labeled Cityscapes data for train-
ing. For fair comparison with [15], we train our model with
a cropping size of 1024×1024, and adopt sliding window
inference with a window size of 1024× 1024. As seen,
our approach reaches 83.0% mIoU, which is 0.8% higher
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Algorithm 1 Pseudo-code of Online Clustering Algorithm
in the PyTorch-like style.

# P: non-learnable prototypes (D x K)
# X: pixel embeddings (D x N)
# iters: sinhorn-knopp iteration number
# kappa: hyper-parameter (Eq.9)
# L: pixel-to-prototype assignment (K x N, Eq.9)

def online_clustering(P, X, iters=3, kappa=0.05)
L = mm(P.transpose(), X)
L = torch.exp(L / kappa)
L /= torch.sum(L)

for _ in range(iters):
# normalize each row
L /= torch.sum(L, dim=1, keepdim=True)
L /= K

# normalize each column
L /= torch.sum(L, dim=0, keepdim=True)
L /= N

# make sure the sum of each column to be 1
L *= N

return L

mm: matrix multiplication.

Method Backbone
# Param

(M)
mIoU
(%)

PSPNet [CVPR17] [16] ResNet-101 [7] 65.9 78.4
PSANet [ECCV18] [17] ResNet-101 [7] - 80.1

ContrastiveSeg [ICCV21] [14] ResNet-101 [7] 58.0 80.3
†SETR [ICCV19] [18] ViT [6] 318.3 81.0

HRNetV2 [PAMI20] [13] HRNetV2-W48 [13] 65.9 81.6
CCNet [ICCV19] [8] ResNet-101 [7] - 81.9
HANet [CVPR20] [4] ResNet-101 [7] - 82.1

SegFormer [NeurIPS21] [15] 84.7 82.2
Ours

MiT-B5 [15]
84.6 83.0 ↑ 0.8

†: backbone is pre-trained on ImageNet-22K.
Table S1. Quantitative results (§S3.1) on Cityscapes [5] test.

than SegFormer [15]. In addition, it greatly outperforms
many famous segmentation models, such as HANet [4],
HRNetV2 [13], SETR [18].

S3.2. Quantitative Result with Lightweight Back-
bones

In Table S2, we compare our approach against four
competitors using lightweight backbones (i.e., MobileNet-
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Method Backbone
# Param

(M)
mIoU
(%)

FCN [CVPR15] [11] MobileNet-V2 [12] 9.8 19.7
PSPNet [CVPR17] [16] MobileNet-V2 [12] 13.7 29.6

DeepLabV3+ [ECCV18] [2] MobileNet-V2 [12] 15.4 34.0
SegFormer [NeurIPS21] [15] MiT-B0 [15] 3.8 37.4

Ours MiT-B0 [15] 3.7 38.5 ↑ 1.1

Table S2. Quantitative results on ADE20K [19] val with
lightweight backbones. See §S3.2 for details.

V2 [12], MiT-B0 [15]) on ADE20K [19] val. With MiT-
B0, our model achieves the best performance (i.e., 38.5%
mIoU) with the smallest number of parameters (i.e., 3.7 M).

S3.3. Hyper-parameter Analysis of λ1 and λ2

Table S3 summarizes the influence of hyper-parameters
λ1 and λ2 to model performance on ADE20K [19] val.
We observe that our model is robust to the two coefficients,
and achieves the best performance at λ1=0.01, λ2=0.01.

λ1 0.001 0.005 0.01 0.02 0.03 0.05
mIoU (%) 46.1 46.3 46.4 46.4 46.2 46.3

λ2 0.001 0.005 0.01 0.02 0.03 0.05
mIoU (%) 46.2 46.2 46.4 46.3 46.3 46.1

Table S3. Analysis of λ1 and λ2 on ADE20K [19] val.

S3.4. Embedding Structure Visualization

Fig. S1 visualizes the embedding learned by (left) para-
metric [15], and (right) our nonparametric segmentation
model. As seen, in our algorithm, the pixel embeddings
belonging to the same prototypes are well separated. This
is because that our model is essentially based on a distance-
based point-wise classifier and its embedding is directly su-
pervised by the metric learning losses, which help reshape
the feature space by encoding latent data structure into the
embedding space.

Figure S1. Embedding spaces learned by (left) parametric model
[15], and (right) our nonparametric model. For better visualiza-
tion, we show five classes of Cityscapes [5] with two prototypes
per class.

S3.5. Additional Qualitative Result

We show more qualitative results on ADE20K [19]
(Fig. S2), Cityscapes [5] (Fig. S3) and COCO-Stuff [1]
(Fig. S4). As observed, our approach generally gives more
accurate predictions than SegFormer [15].

S4. Discussion

Limitation Analysis. One limitation of our approach is
that it needs a clustering procedure during training, which
increases the time complexity. However, in practice, the
clustering algorithm imposes a minor computational bur-
den, only taking about 2.5 ms to cluster 10K pixels into
10 prototypes. Additionally, like many other semantic seg-
mentation models, our approach is subject to some factors
such as domain gaps, label quality and fairness. We will put
more efforts on improving the “in the wild” robustness of
our model in the future research.

Broader Impact. This work provides a prototype perspec-
tive to unify existing mask decoding strategies, and accord-
ingly introduces a novel non-learnable prototype based non-
parametric segmentation scheme. On the positive side, the
approach pushes the boundary of segmentation algorithms
in terms of model efficiency and accuracy, and shows great
potentials in unrestricted segmentation scenarios with thou-
sands of semantic categories. Thus, the research could find
diverse real-world applications such as self-driving cars and
robot navigation. On the negative side, our model can be
misused to segment the minority groups for malicious pur-
poses. In addition, the problematic segmentation may cause
inaccurate decision or planning of systems based on the re-
sults.

Future Work. This work also comes with new challenges,
certainly worth further exploration:

• Closer Ties to Unsupervised Representation Learning.
Our segmentation model directly learns the pixel embed-
ding space with non-learnable prototypes. A critical suc-
cess factor of recent unsupervised representation learning
methods lies on the direct comparison of embeddings.
By sharing such regime, our nonparametric model has
good potential to make full use of unsupervised represen-
tations.

• Further Enhancing Interpretability. Our model only
uses the mean of several embedded ‘support’ pixel sam-
ples as the prototype for each (sub-)class. To pursue bet-
ter interpretability, one can optimize the prototypes to
directly resemble actual pixels, or region-level observa-
tions [9, 10].

• Unifying Image-Wise and Pixel-Wise Classification. A
common practice of building segmentation models is to
remove the classification head from a pretrained classi-
fier and leave the encoder. This is not optimal as lots of
‘knowledge’ are directly dropped. However, with proto-
type learning, one can transfer the ‘knowledge’ of a non-
parametric classier to a nonparametric segmenter intactly,
and formulate image-wise and pixel-wise classification in
a unified paradigm.
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Segformer Ours Segformer Ours
Figure S2. Qualitative results of Segformer [15] and our approach on ADE20K [19] val.
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Figure S3. Qualitative results of Segformer [15] and our approach on Cityscapes [5] val.
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Figure S4. Qualitative results of Segformer [15] and our approach on COCO-Stuff [1] test.


