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1. Residual Block
As illustrated in Table 1, our residual block is comprised

of two convolutions, where the first convolution is followed
by ReLU activation. In previous works [1, 2, 11], the chan-
nel numbers typically keep identical within the residual
block. In contrast, we set the channel dimension of hidden
representations (M1) no more than 64 to reduce the param-
eters of our network and speed up the training and inference
phases:

M1 = max(M//2, 64), (1)

Input x
Layer1 Conv(M ,M1,3,1) + ReLU
Layer2 Conv(M1,M ,3,1) ⇒ y
Output x+y

Table 1. The structure of our residual block. M refers to the chan-
nel number of input.

2. Hyper-parameters in ARW
We examine the impacts of the patch size and α in our

ARW module. By default, we use a patch size of 3 to calcu-
late the accuracy-based re-weighting and set the α to −1.0
in consistency-based re-weighting. Also, we explore differ-
ent settings of the two hyper-parameters. The results are
shown in the Table 2. It is observed that a larger patch size
leads to a performance drop and different values of α have
limited influence on the final quality.

P. Size 3× 3 5× 5 7× 7
PSNR 37.84 37.80 37.72

α −0.5 −1.0 −2.0
PSNR 37.83 37.84 37.81

Table 2. Ablation study of the hyper-parameters in ARW.

*Equal contribution
†Corresponding author

3. More RBs in Reconstruction Module

To better understand the effect of the residual block (RB)
numbers, apart from the default setting with 40 RBs, we
train three additional models with 10, 20 and 60 RBs. As
shown in the Table 3, the final performance is positively
correlated with the number of RBs.

Num. of RBs 10 20 40 60
PSNR (dB) 37.51 37.69 37.84 37.89

Table 3. The influence of different RB numbers.

4. More Results

4.1. Temporal Consistency

We compare the temporal consistency of our method
with several state-of-art video SR approaches [2, 4, 6, 11].
The visual results are illustrated in Figure 1. It is ob-
served that other methods fail to restore the consistent tex-
tures clearly. While our method empowered with iterative
alignment and two adaptively reweighting strategies is able
to generate realistic image contents that are closest to the
ground-truth.

4.2. Comparison with State-of-the-art

In Table 4 and 5, we give the detialed comparison with
several state-of-the-art video SR approaches [1, 1, 2, 11] on
REDS4 [8] and Vid4 [7]. The PSNR and SSIM of each
video sequence are reported. For most video clips of both
two validation sets, our model consistently achieves the best
performance. Moreover, we provide extensive qualitative
comparison on UDM10 [13], Vid4 [7], Vimeo-90K-T [12],
and REDS4 [8] for video SR (in Figure 2, 3), VDB-T [9]
for video deblurring (in Figure 4) and Set8 [10], DAVIS [5]
for video denoising (in Figure 5). All the qualitative results
demonstrate that our method has the capacity to handle var-
ious challenging cases in these three video restoration tasks.
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Methods nFrame Clip 000 Clip 011 Clip 015 Clip 020 Average
Bicubic 1 24.55/0.6489 26.06/0.7261 28.52/0.8034 25.41/0.7386 26.14/0.7292
RCAN [14] 1 26.17/0.7371 29.34/0.8255 31.85/0.8881 27.74/0.8293 28.78/0.8200
TOF [12] 7 26.52/0.7540 27.80/0.7858 30.67/0.8609 26.92/0.7953 27.98/0.7990
DUF [4] 7 27.30/0.7937 28.38/0.8056 31.55/0.8846 27.30/0.8164 28.63/0.8251
EDVR [11] 5 28.01/0.8250 32.17/0.8864 34.06/0.9206 30.09/0.8881 31.09/0.8800
MuCAN [6] 5 27.99/0.8219 31.84/0.8801 33.90/0.9170 29.78/0.8811 30.88/0.8750
∗BasicVSR [2] 5 27.67/0.8114 31.27/0.8740 33.58/0.9135 29.71/0.8803 30.56/0.8698
∗IconVSR [2] 5 27.83/0.8182 31.69/0.8798 33.81/0.9164 29.90/0.8841 30.81/0.8746
VSR-T [1] 5 28.06/0.8267 32.28/0.8883 34.15/0.9199 30.26/0.8912 31.19/0.8815
Ours 5 28.16/0.8316 32.24/0.8889 34.53/0.9275 30.26/0.8920 31.30/0.8850

Table 4. Quantitative comparison on REDS4 [8] benchmark under ×4 setting for video super-resolution. Numbers in red and blue refer
to the best and second-best results. All the results are evaluated in the RGB channel. ’∗’ indicates the results are from [1].

Clip Name Bicubic DUF [4] EDVR [11] MuCAN [6] BasicVSR [2] IconVSR [2] VSR-T [1] Ours
Calendar (Y) 20.39/0.5720 24.04/0.8110 24.05/0.8147 - - - 24.08/0.8125 24.65/0.8270
City (Y) 25.16/0.6028 28.27/0.8313 28.00/0.8122 - - - 27.94/0.8107 29.92/0.8428
Foliage (Y) 23.47/0.5666 26.41/0.7709 26.34/0.7635 - - - 26.33/0.7635 26.41/0.7652
Walk (Y) 26.10/0.7974 30.60/0.9141 31.02/0.9152 - - - 31.10/0.9163 31.15/0.9167
Average (Y) 23.78/0.6347 27.33/0.8318 27.35/0.8264 27.26/0.8215 27.24/0.8251 27.39/0.8279 27.36/0.8258 27.90/0.8380
Average (RGB) 22.37/0.6098 25.79/0.8136 25.83/0.8077 - - - - 26.57/0.8235

Table 5. Quantitative comparison on Vid4 [7] under x4 setting for video super-resolution. We report the PSNR (dB)/SSIM results on both
the RGB and the Y channel. Numbers in red and blue refer to the best and second-best results.
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Figure 1. Visualization of temporal consistency on Vid4 [7].

4.3. Comparison with BasicVSR++

In Table 5 of our main text, the PSNR/SSIM values of
BasicVSR++ on Vimeo-90K-T are obtained by pre-training
on REDS. Though our model is only trained on Vimeo-90K
without pre-training (as a typical setup), our method still
performs better than it (37.79dB→37.84dB). As for REDS4

and Vid4, BasicVSR++ aggregates the information from the
full sequence (i.e., 100 frames for REDS4 and 34-49 frames
for Vid4) for super-resolving a video frame. In contrast,
we adopt the commonly used 5/7-frame settings, like other
methods evaluated in Table 4 of our manuscript. In sum-
mary, BasicVSR++ actually used extra information and dif-
ferent test setups.

4.4. Video Results

We also provide three videos for visual inspection.
“city.mp4”. This video illustrates the visual comparison
between bicubic and our method on a Vid4 clip for video
super-resolution. It can be observed that our method re-
stores much clear image details (e.g., the finer structure of
buildings).
“IMG0030.mp4”. This video demonstrates the visual re-
sults of our method on a testing sequence of VDB-T [9] for
the video deblurring task. The burry input and the generated
frames are shown in it.
“motorbike.mp4”. This video shows the restoration re-
sults on a sequence of Set8 [10] for video denoising.
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Figure 2. Qualitative comparison on UDM10 [13] and Vid4 [7] for video SR.
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Figure 3. Qualitative comparison on Vimeo-90K-T [12] and REDS4 [8] for video SR.
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20.45dB/0.723 22.45dB/0.634 24.44dB/0.723 27.72dB/0.840 -/-

17.37dB/0.377 18.54dB/0.447 21.65dB/0.678 23.35dB/0.753 -/-

28.95dB/0.883 33.14dB/0.938 34.24dB/0.953 34.39dB/0.950 -/-

33.10dB/0.959 35.97dB/0.966 35.78dB/0.969 36.51dB/0.969 -/-

26.84dB/0.835 31.47dB/0.915 32.64dB/0.935 35.10dB/0.952 -/-

21.65dB/0.643 27.45dB/0.855 28.10dB/0.972 29.61dB/0.892 -/-

21.32dB/0.629 26.00dB/0.827 26.75dB/0.861 27.15dB/0.865 -/-

21.18dB/0.571 26.12dB/0.807 28.24dB/0.882 28.83dB/0.882 -/-

Figure 4. Qualitative comparison on VDB-T [9] for video deblurring.
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19.00dB 29.18dB 34.33dB 34.46dB -

18.85dB 31.52dB 35.78dB 36.73dB -

19.35dB 28.24dB 35.89dB 36.65dB -

19.29dB 27.43dB 32.04dB 32.07dB -

19.24dB 26.99dB 30.95dB 31.20dB -

Figure 5. Qualitative comparison on Set8 [10], DAVIS [5] for video denoising. The values beneath images represent the PSNR (dB).
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