
Simple Multi-dataset Detection — Supplementary Materials

A. Dataset details

Table 1 lists the datasets we used in our experiments. We
use the Robust Vision Challenge1 official release of each
dataset. Specifically, we use the standard 2017 train/ val-
idation split for COCO [7], the Challenge-2019 release of
OpenImages [6], and the default version of Objects365 [10]
and Mapillary [8]. For ScanNet [3], as there is no standard
train/ validation split, we use the first 80% scenes (sorted by
scene ID) as training and the last 20% scene as validation.
For KITTI [5], we used the RVC challenge version that has
instance-segmentation version, which contains 200 images.
For WildDash [12], we use the public version for evaluation,
and report standard mAP performance. We don’t consider
the negative label metric in the official website. For Crowd-
Human [11], we use the visible bounding box annotation,
and report mAP instead of the missing rate as the official
metric. We use the official train/ validation split and the of-
ficial evaluation metrics for VIPER [9], Cityscapes [2], and
Pascal VOC [4].

1http://www.robustvision.net

Dataset name Domain # Cat. # Img.

Train & Validation
COCO Internet images 80 118k
Objects365 Internet images 365 600k
OpenImages Internet images 500 1.8M
Mapillary Traffic 38 18k

Test
ScanNet Indoor 20 25k
VIPER Virtual 10 13k
Cityscapes Traffic 8 12k
WildDash Traffic 13 4k
KITTI Traffic 8 200
Pascal VOC Internet images 20 16k
CrowdHuman Internet images 1 15k

Table 1. Datasets we used in training and testing. Top: datasets we
used in training and validation, which are from the Robust Vision
Challenge. Bottom: datasets we used for zero-shot cross-dataset
testing.

B. Computation of label space learning algo-
rithm and pruning

The size of our optimization problem scales linearly in
the number of potential merges |T|, which can grow ex-
ponentially in the number of datasets. To counteract this
exponential growth, we only consider sets of classes

T′ =
{
t ∈ T

∣∣∣∣ ct
|t| − 1

≤ τ
}
.

For an aggressive enough threshold τ , the number of poten-
tial merges |T ′| remains manageable. We greedily grow T ′
by first enumerating all feasible two-class merges (|t| = 2),
then three-class merges, and so on. The detailed algorithm
diagram is shown in Algorithm 1. The runtime of this
greedy algorithm is O(|T ′|maxi |L̂i|). In practice, the cost
computation took a few seconds for the distortion loss func-
tion and about 10 minutes for the AP loss (due to the need to
repeatedly recompute AP). The integer programming solver
finds the optimal solution within one second in both cases.

C. Adding new datasets to a label space
While we tend to keep the training domains and label

space large and comprehensive, it is inevitable in practice
that more fine-grained labels or specific testing domains are
needed. Given a learned a unified label space on an exist-
ing set of training datasets, we use a simple label space ex-
pansion algorithm to allow adding more datasets and labels
after the unified detector is trained.

Similar to our unified label space learning algorithm, we
run the unified detector on the new training data. We eval-
uate the AP between each class in the new dataset annota-
tion and each class in the unified label space. We merge
the new class into the existing class that gives the lowest
merge cost (Section. 4.2). In our experiments, add Mapil-
lary dataset [8] to our label space we using the AP loss. If
the cost is lower than a threshold (AP change < 5 AP in
our implementation). Otherwise, we append the new class
to the unified label space as a single class.

D. Discussion on label hierarchy
Different datasets may contain different label granular-

ities for the same concept, and there exists label hierar-
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http://www.robustvision.net


COCO CityScapes Mapillary VIPER ScanNet OpenImages KITTI WildDash

COCO 35.6 19.6 3.2 8.5 5.2 7.2 15.7 8.4
CityScapes 0.0 21.5 0.8 2.3 0.0 0.0 13.0 2.4
Mapillary 0.6 11.7 10.6 9.0 1.2 0.0 13.4 5.4
VIPER 0.1 2.8 1.1 17.8 0.0 0.0 6.5 1.4
ScanNet 0.4 0.0 0.0 0.0 35.6 0.0 0.0 0.0
OpenImages 12.9 9.5 1.1 3.5 1.7 52.8 7.2 4.9

Unified (ours) 24.0 28.3 8.1 16.5 28.7 41.8 16.9 11.3

Table 2. Instance segmentation performance on six training datasets and two new datasets (KITTI and WildDash). We show mask mAP on
the validation set of each dataset.

Algorithm 1: Learning a unified label space
Input : {bi, l̂i}Ni=1: ground truth bounding boxes

and labels for each of the N training
datasets
{{b̃(j)

i , l̃
(j)
i }Nj=1}Ni=1: predicted bounding

boxes with predicted classes in all datasets for each
training dataset

λ, τ : hyper-parameters for algorithm
Output: L: unified label space

T : the transformation from each individual
label space to the unified label space

1 // Compute potential merges and merge cost
2 L̂ =

⋃
i L̂i // Short-hand used to simplify notation

3 T1 ← {(l)|l ∈ L̂} // Set of single labels
4 Compute ct for all single labels t ∈ T. // 0 for most

metrics
5 for n = 2 . . . N do
6 Tn ← {}
7 for t ∈ Tn−1 do
8 for l ∈ L̂ do
9 if l and all labels in t are from different

datasets then
10 compute ct∪{l}.
11 if ct∪{l}

n−1 ≤ τ then
12 Add t ∪ {l} to Tn.
13 end
14 end
15 end
16 end
17 end
18 T←

⋃N
n=1 Tn

19 // Solve the ILP.
20 x← ILP solver(c,T, λ) // Solve equation (8).
21 Compute L, T from x
22 Return: L, T

chies inter or intra datasets. For example, Objects365 [10]
does not have a “bird” category, but has more fine-grained
bird species like parrot, pigeon, and swan, while most
other datasets only annotate “bird”. Our label space op-
timization algorithm automatically handles the hierarchi-
cal label space issue: the fine-grained birds in Objects365
will not merge with COCO birds because this merge intro-
duces many false-positives for the fine-grained birds in Ob-
jects365 and yields a large cost. Our unified label space will
contain both the general “bird” class and each fine-grained
class. The model trained on the unified label space is ex-
pected to predict both the coarse “bird” label and the fine-
grained label in testing.

E. Instance segmentation
We further evaluate our label space learning algorithm

and unified training framework on instance segmenta-
tion. We follow the Robust vision challenge set up to
use 8 datasets: COCO, OpenImages, Mapillary, ScanNet,
VIPER, CityScapes, WildDash and KITTI (the same as Ta-
ble 1, except OpenImages segmentation set has 300 instead
of 500 classes.). Again, we leave WildDash and KITTI as
testing only as they are small and similar to CityScapes and
Mapillary. We run our label space learning algorithm (Sec-
tion. 4) on the remaining six datasets, resulting a unified
label space of 358 classes. We use CascadeRCNN [1] with
a standard mask head as the detector, and train a 2× sched-
ule with ResNet50. The dataset-specific models are trained
with 1× or 2× schedule depending on their size.

Table. 2 compares the unified detector to dataset specific
models. As expected, no single dataset-specific model per-
forms well on all test domains. Our unified model performs
consistently good on all training datasets. More impor-
tantly, it generalizes the best to the new test datasets (KITTI
and WildDash) than any single dataset model.
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