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A. Multi-scale Features Utilization.
To exploit sufficient spatio-temporal information, in

Slot-VPS, VPR (Video Panoptic Retriever) is stacked for
multiple stages and employed with multi-scale features. As
shown in Figure S1, each stage, consisting of multiple VPR
modules, is applied on features of certain scale, and fea-
tures of different scales are fused through Fuse module
across stages. Sinusoidal position embedding [1] is gener-
ated based on the input features of each stage. In Fuse mod-
ule, the lower-resolution feature map is up-sampled, con-
catenated with the higher-resolution feature map, and fused
via a 1× 1 convolutional layer. The fused feature map will
be fed into the subsequent stage.

With this multi-scale learning strategy, the difficulty of
learning the unified slot representations is mitigated and the
ability of handling multi-scale objects is improved.

B. Comparison between Slot-VPS and Related
Methods.

The differences among Slot-VPS, Slot Attention [3],
DETR [1], and previous VPS methods [2, 4] are shown in
Table S1. The biggest advantage of Slot-VPS is that its
VPR, consisting of Panoptic Retriever and Video Retriever,
helps the panoptic slots acquire object information in each
frame and makes it become consistent for the same object
across frames. (a) On the image level, DETR’s attention
applies the softmax along the spatial dimension, discrimi-
nating only pixels instead of objects (−4.2 PQ vs. Panop-
tic Retriever). Slot Attention’s learnable parameters are
the mean and variance of the normal distribution, failing
to handle complex objects in the real world (−26 PQ vs.
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Video object
representation Scenario

Image
level

Slot Attention distribution level slot NONE NO synthetic
DETR object level spatial NONE NO real-world

Video
level

Prev VPS methods NONE NONE feature NO real-world
Slot-VPS (Ours) object level slot slot YES real-world

Table S1. Comparison between Slot-VPS and related methods.

Panoptic Retriever). (b) On the video level, previous VPS
methods apply temporal attention on the feature level. This
leads the temporal object information to be affected by the
background features. Experiments show that replacing our
Video Retriever with this strategy leads to 1.2 VPQ drop.

C. Visualization of Result Comparison on
Cityscapes-VPS and VIPER.

Result comparison between VPSNet [2] and the pro-
posed Slot-VPS on Cityscapes-VPS and VIPER are visu-
alized in Figure S2, Figure S3, Figure S4 and Figure S5.
It validates that our method can handle objects with differ-
ent scales, achieve richer details in single frame and better
temporal consistency across frames.

D. Limitation and Broader Impact.
(1) Slot-VPS currently predicts the object ID based on

the correlations of panoptic slots across frames. Advanced
architecture, loss, and regularization technologies may be
explored to improve VPS performance without an ID head.
(2) Slot-VPS unifies the video panoptic segmentation in
terms of representations, however, it does not fully unify
the entire training pipeline since the learning targets are
still separated and individual losses and manually tuned loss
weights are needed. This problem is challenging but maybe
potentially solved by designing a new unified loss to the
whole VPS task. (3) Current metric does not fully consider
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Figure S1. Multi-scale feature utilization in the Slot-VPS. Take two frames (t and t-1) as an example, four stages of Video Panoptic
Retriever (VPR), consisting of 1, 2, 2, 2 VPR modules respectively, are consecutively applied on four scales of multi-scale features extracted
from the backbone. In each stage, VPR takes the features with its position embedding and panoptic slots as input and output the spatio-
temporal coherent panoptic slots. Across stages, Fuse module is applied to generate fused features for later stage. Note that position
embedding for later stages are omitted for brevity. D,C refer to the spatial size (height × width) and the number of channels of feature
maps respectively.

the severity of prediction error, which is also an interesting
research direction.
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Figure S2. Visualization of result comparison on Cityscapes-VPS. From left to right: input frame, GT annotation, VPSNet predictions,
and our predictions. Each case contains four consecutive frames (from top to bottom) from a video. Key regions are cropped in yellow
rectangles. The matched instances are tagged with the same number across frames. Green and white numbers represent the consistent and
inconsistent ID predictions respectively. Note that the bus in the fourth frame of bottom case is mistakenly classified as car by VPSNet. In
comparison, our results have better temporal consistency even though people are very close to each other or the bus varies greatly in size.
Moreover, as emphasized by the blue ovals, our segmentation masks have richer details (e.g. the head and hand of person in top case, the
bus mirror in bottom case). Best viewed in color.
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Figure S3. Visualization of result comparison on Cityscapes-VPS. From left to right: input frame, GT annotation, VPSNet predictions,
and our predictions. Each case contains four consecutive frames (from top to bottom) from a video. Key regions are cropped in yellow
rectangles. The matched instances are tagged with the same number across frames. Green and white numbers represent the consistent and
inconsistent ID predictions respectively. For this kind of dense situations, VPSNet easily missed or mistakenly assigned IDs to objects
(e.g. the car with ID 5 in the top case is correctly segmented and identified only in the third frame, the person with ID 2 in the bottom case
is missed for all frames.). While our predictions are always consistent across all frames. Moreover, as emphasized by the blue ovals, our
segmentation masks have richer details (e.g. the head and hand of person, the traffic sign in bottom case). Best viewed in color.
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Figure S4. Visualization of result comparison on VIPER. From left to right: input frame, GT annotation, VPSNet predictions, and our
predictions. Each case contains four consecutive frames (from top to bottom) from a video. Key regions are cropped in yellow rectangles.
The matched instances are tagged with the same number across frames. Green and white numbers represent the consistent and inconsistent
ID predictions respectively. As emphasized by the blue ovals, our segmentation masks have richer details (e.g. the person in the car in the
top case, the bridge cable in bottom case). Best viewed in color.
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Figure S5. Visualization of result comparison on VIPER. From left to right: input frame, GT annotation, VPSNet predictions, and our
predictions. Each case contains four consecutive frames (from top to bottom) from a video. Key regions are cropped in yellow rectangles.
The matched instances are tagged with the same number across frames. Green and white numbers represent the consistent and inconsistent
ID predictions respectively. As emphasized by the blue ovals, our segmentation masks have richer details (e.g. the car mirror in the top case,
the fence in bottom case). Note that VPSNet can barely segment the details inside cars in these cases but our predictions have sufficient
details. Best viewed in color.


