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A. Proof of Theorem 2 and Theorem 3
In this section, we will proof Theorem 2 and Theorem 3 proposed in section 3.2. The main idea of the proof is to

decouple the class-specific batch-wise loss as attraction term and repulsion term as in [2]. First, we will show the spontaneous
appearance of variability collapse as the training process in attraction term. When this condition holds, we find that to
minimize the loss, the solution of the model spontaneously satisfies the simplex configuration.

Before the detailed derivation, recall the main notions and definitions of this paper:

• h,K,N ∈ N

• Z = Rh

• Y = [K] = {1, 2, . . . ,K}

Definition 1 (Supervise contrastive loss) For an instance xi of representation zi in a batch B, supervised contrastive loss
has the following expression:

Li = − 1

|By| − 1

∑
p∈By\{i}

log
exp(zi · zp)∑

k∈B\{i}
exp(zi · zk)

(1)

Definition 2 (Balanced contrastive loss) For an instance xi of representation zi in a batch B, balanced contrastive loss has
the following expression:

Li = − 1

|By| − 1

∑
p∈By\{i}

log
exp(zi · zp)∑

j∈YB

1
|Bj |

∑
k∈Bj

exp(zi · zk)
(2)

Definition 3 (Class-specific batch-wise loss)

L(Z;Y,B, y) =

{∑
i∈By

Li if |By| > 1

0 else
(3)

Definition 4 (Regular simplex) A set of points ζ1, . . . , ζK ∈ Rh form the vertices of a regular simplex inscribed in the
hypersphere of radius ρ > 0, if and only if the following conditions hold:

(1)
∑

i∈[K] ζi = 0

(2) ∥ζi∥ = ρ, for i ∈ [K]

*Indicates equal contribution.
†Jingjing-Chen is the corresponding author.
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(3) ∃d ∈ R : d = ⟨ζi, ζj⟩ for 1 ≤ i < j ≤ K

where By and YB are subsets of B and Y , respectively. Note that the |Bj | term in above equations will minus one when the
positive class is averaged. Here, we omit hyper parameter temperature τ and ⟨·⟩ for the inner product operation. Additionally,
we default to K ≥ h+ 1 and assume ∥zi∥2 = 1.
Proof of Theorem 2 First we rewrite class-specific batch-wise loss as following form:

LBCL(Z;Y,B, y) =
∑
i∈By

− 1

|By| − 1

∑
p∈By\{i}

log
exp(zi · zp)∑

j∈YB

1
|Bj |

∑
k∈Bj

exp(zi · zk)

=
∑
i∈By

log


∑

j∈YB

1
|Bj |

∑
k∈Bj

exp(zi · zk)∏
p∈By\{i}

exp(zi, zp)1/|By|−1



=
∑
i∈By

log


∑

j∈YB

1
|Bj |

∑
k∈Bj

exp(zi · zk)

exp( 1
|By|−1

∑
p∈By\{i}

zi · zp)


(4)

The key idea is to divide the sum in the numerator into positives and negatives. Since the exponential function is convex, by
applying Jensen’s inequality, we have

1

|By| − 1

∑
k∈By\{i}

exp(zi · zk)
(Q1)

≥ exp

 1

|By| − 1

∑
k∈By\{i}

zi · zk


1

|Bj |
∑
k∈Bj
j ̸=y

exp(zi · zk)
(Q2)

≥ exp

 1

|Bj |
∑
k∈Bj

zi · zk

 (5)

The equality is attained if and only if:

(Q1) There is Ci(B, y) such that ∀k ∈ By \ {i} all inner products zi · zk = Ci(B, y) are equal.

(Q2) There is Di(B, y, j) such that ∀k ∈ Bj,j ̸=y all inner products zi · zk = Di(B, y, j) are equal.

Thus, the sum in the numerator can be written as follows

∑
j∈YB

1

|Bj |
∑
j∈Bj

exp(zi · zk) ≥ exp

 1

|By| − 1

∑
p∈By\{i}

zi · zp

+
∑
j∈YB
j ̸=y

exp

 1

|Bj |
∑
k∈Bj

zi · zk

 (6)

By leverage Jensen’s inequality again on the latter term, resulting in

∑
j∈YB
j ̸=y

exp

 1

|Bj |
∑
k∈Bj

zi · zk

 (Q3)

≥ (|YB | − 1) exp

 1

|YB | − 1

∑
j∈YB
j ̸=y

1

|Bj |
∑
k∈Bj

zi · zk

 (7)

Here, the equality is attained if and only if

(Q3) There is Ei(B, y) such that ∀j ∈ YB,j ̸=y,∀k ∈ Bj all inner products zi · zk = Ei(B, y) are equal.

Thus, for a specific mini-batch, Eq. 4 can be written as

LBCL(Z;Y,B, y) ≥
∑
i∈By

log

1 + (|YB | − 1) exp


1

|YB | − 1

∑
q∈YB\{y}

1

|Bq|
∑
k∈Bq

zi · zk︸ ︷︷ ︸
repulsion term

− 1

|By| − 1

∑
j∈By\{i}

zi · zj︸ ︷︷ ︸
attraction term




(8)



which ends the proof of Theorem 2. Here, the equality is attained if and only if conditions (Q1) and (Q3) hold for every
i ∈ By . Additionally, constants Ci(B, y) and Ei(B, y) only depend on the batch B and the label y.
Proof of Theorem 3 On the basis of theorem 2, we assume YB = Y for every batch B. For simplicity, we rewrite the two
terms of the exponential function in Theorem 2 as the following form

S(Z;Y,B, y) = Satt(Z;Y,B, y) + Srep(Z;Y,B, y)

Satt(Z;Y,B, y) = − 1

|By| − 1

∑
j∈By\{i}

zi · zj

Srep(Z;Y,B, y) =
1

|Y| − 1

∑
q∈Y\{y}

1

|Bq|
∑
k∈Bq

zi · zk

(9)

Regroup the addends, we can obtain the following formulation

LBCL(Z;Y ) =
∑
B∈B

∑
y∈Y

LBCL(Z;Y,B, y)

≥
∑
B∈B

∑
y∈Y

∑
i∈By

log (1 + (|Y| − 1) exp(S(Z;Y,B, y)))
(10)

Let α > 0, and f : R → R, x → log(1 + α exp(x)). It is easy to verify that the function f is smooth with second derivative
and convex. According to Jensen’s inequality, we obtain the lower bound as follows

LBCL(Z;Y )
(Q4)

≥ |D| log

1 + (|Y| − 1) exp

∑
B∈B

∑
y∈Y

∑
i∈By

S(Z;Y,B, y)

 (11)

where D denotes the dataset, the equality is attained if and only if:

(Q4) There is constant θ such that ∀B ∈ B,∀y ∈ Y and ∀i ∈ By , the values of S(Z;Y,B, y) = θ agree.

Next we derive the sum of attraction terms. For every Y ∈ YN and every Z ∈ ZN , using the Cauchy-Schwarz inequality
and the assumption that Z is a unit hypersphere, we have∑

i∈By

Satt(Z;Y,B, y) = − 1

|By| − 1

∑
i∈By

∑
j∈By\{i}

zi · zj

(Q5)

≥ −|By| ×
1

|By|(|By| − 1)

∑
i∈By

∑
j∈By\{i}

∥zi∥∥zj∥ = −|By|
(12)

Since the zi and zj are on a hypersphere, this implies the condition of equality is equivalent to zi = zj .

(Q5) For every n,m ∈ [N ], yn = ym implies zn = zm.

Note that (Q5) implies the variability collapse, that is all the within-class representations collapse to their class means. When
this condition holds and recall the definition of balanced contrastive loss, for an instance xi with label y in a batch B, balanced
contrastive loss has the following expression:

LBCL =
∑
B∈B

∑
y∈Y

∑
i∈By

Li

Li = − log
exp(zi · zcy )

exp(zi · zcy ) +
∑

j∈Y\{y}
exp(zi · zcj )

(13)

Note that under the condition of (Q5), for every B ∈ B, every y ∈ Y and every i ∈ By , it holds that zi = zcy , and the
label configuration of Li is balanced. To minimize the above loss, the solution obviously satisfies the simplex configuration.
Leveraging the lower bound of supervised contrastive loss under balanced settings [2], we have

Li

(Q6)

≥ log

(
1 + (K − 1) exp

(
− K

K − 1

))
(14)



(Q6) zc1 , . . . , zcK form a regular simplex

Combine the aforementioned conditions, we can obtain the claimed lower bound of balanced contrastive loss:

LBCL(Z;Y ) ≥ |D| log
(
1 + (K − 1) exp

(
− K

K − 1

))
(15)

Recall that Z is an N point configuration with labels Y , the equality of Eq. 15 is attained if and only if the following conditions
hold. There are ζ1, . . . , ζK ∈ Rh such that:

(1) ∀n ∈ [N ] : zn = ζyn

(2) ζ1, . . . , ζK form a regular simplex

B. Gradient Analysis
Balanced contrastive loss achieves the balance by averaging the parts of each class. An analysis of the gradients well

reflects this conclusion. First, we will discus the defects of the supervised contrastive loss when working on the long-tailed
data. Next, we will give the gradient derivation of the balanced contrastive loss, from which we can easily identify that
balanced contrastive loss is better at handling long-tailed data.

Recall the definitions of supervised contrastive (SC) loss, neglecting the hyper parameter temperature τ , the gradient of
SC loss has the following formulation [3]:

∂LSC
i

∂zi
=

∑
p∈By\{i}

zp

(
Pip −

1

|By| − 1

)
︸ ︷︷ ︸

positive term

+
∑

n∈BC
y

znPin

︸ ︷︷ ︸
negative term

(16)

where BC
y is the complement set of By and we have defined:

Pip =
exp(zi · zp)∑

k∈B\{i}
exp(zi · zk)

Pin =
exp(zi · zn)∑

k∈B\{i}
exp(zi · zk)

(17)

Since there is a normalization function before computing the loss. Let wi denote the output prior to normalization in a slight
abuse of notation, i.e., zi = wi/∥wi∥. Then, the gradient with respect to wi is as follows:

∂LSC
i

∂wi
=

1

∥wi∥
(I − ziz

T
i )

 ∑
p∈By\{i}

zp

(
Pip −

1

|By| − 1

)
+

∑
n∈BC

y

znPin



=
1

∥wi∥


∑

p∈By\{i}

(zp − (zi · zp)zi)(Pip −
1

|By| − 1
)

︸ ︷︷ ︸
positive term

+
∑

n∈BC
y

(zn − (zi · zn)zi)Pin

︸ ︷︷ ︸
negative term


(18)

We mainly concern with the gradients from the negative term. For hard negatives, zi · zn ≈ 0 (assume zi · zn ≤ 0 ), so that
the gradient of LSC

i from the hard negatives is as follows:∑
n∈BC

y

∥zn − (zi · zn)zi∥|Pin|

≈
∑

n∈BC
y

|Pin|

=
∑

n∈BC
y

1∑
k∈B\{i}

exp(zi · zk)

(19)



Given an anchor, the term in the denominator is consistent for all negative samples, resulting in the negative class gradient
is proportional to the number of samples. But under the long-tailed distribution, within almost every mini-batch, there are
much more head class samples than tail class samples. This leads to all classes being as far away from the head category as
possible, and results in an unbalanced feature space.

For balanced contrastive (BC) loss, the gradient has the following formulation:

∂LBC
i

∂zi
= − 1

|By| − 1

∑
p∈By\{i}

zp −
∑
j∈Y

1

|Bj |
∑
k∈Bj

zkXik


= − 1

|By| − 1

∑
p∈By\{i}

zp −
1

|By| − 1

∑
p′∈By\{i}

zp′Xip′ −
∑

j∈Y\{y}

1

|Bj |
∑
k∈Bj

zkXik


=

1

|By| − 1

∑
p∈By\{i}

zp(Xip − 1)

︸ ︷︷ ︸
positive term

+
∑

j∈Y\{y}

1

|Bj |
∑
k∈Bj

zkXik︸ ︷︷ ︸
negative term

(20)

where we have defined:

Xip =
exp(zi · zp)∑

j∈Y

1
|Bj

|
∑

k∈Bj

exp(zi · zk)

Xik =
exp(zi · zk)∑

j∈Y

1
|Bj

|
∑

k∈Bj

exp(zi · zk)

(21)

Similar to the derivation of supervised contrastive loss, the gradient with respect to wi of balanced contrastive loss is as
follows:

∂LBC
i

∂wi
=

1

∥wi∥


1

|By| − 1

∑
p∈By\{i}

(zp − (zi · zp)zi)(Xip − 1)

︸ ︷︷ ︸
positive term

+
∑

j∈Y\{y}

1

|Bj |
∑
k∈Bj

(zk − (zi · zk)zi)Xik︸ ︷︷ ︸
negative term

 (22)

Intuitively, balanced contrastive loss balances the gradients from negative classes, avoiding a tremendous gradient update
from the negative head class samples. It retains several good properties of supervised contrastive loss. Easy negatives
zi · zk ≈ −1 contributes less gradient while hard negatives more gradient, and easy positives zi · zp ≈ 1 (assume zi · zp ≥ 0),
contributes less gradient compared with hard positives. In addition to these common properties, the balanced contrastive loss
is better at feature alignment, where points belonging to the same class are pulled together. Since almost every mini-batch is
long-tailed, for these head class anchors, the gradients in Eq. 18 from the positives will be much larger than when the anchor
is tails. It results in tail class samples being unconcerned to pulling these points together. Comparing Eq. 18 with Eq. 22,
balanced contrastive loss also adjusts the gradients from the positives, eliminating excessive gradient fluctuations caused by
having different anchor classes in different batches and allowing the points of tail classes been pulled closer.

C. More Results
C.1. Ablations of Different Forms of Prototypes.

We compare our method with the other two implementations of the prototype. The first one is using the exponential
moving average to calculate the prototype. The second one is using learnable parameters [1, 5]. As shown in Table 1, our
implementation achieves the best results and the other two implementations achieve similar results.

C.2. Ablations of Different Configurations of Views.

We compare our configuration with the other two configurations of views. We use the simple augmentation method, i.e.,
SimAug, to generate both views for contrastive learning. We further have one of the views generated via a stronger augmen-
tation method, i.e., RandAug, or both of the views generated by RandAug. As shown in Table 2, stronger argumentation
yields better performance.



Methods Many Medium Few All
Exponential Moving Average 69.7 54.4 31.9 53.0

Learnable Parameters 68.9 54.0 34.3 53.3
Ours 69.7 53.8 35.5 53.9

Table 1. Ablation study for different implementations of prototypes on CIFAR-100-LT with an imbalance fator of 100. All models run for
400 epochs with the same training scheme.

Methods Many Medium Few All
SimAug.&SimAug. 67.2 53.9 36.5 56.7
RandAug.&SimAug. 67.1 54.6 37.1 57.1
RandAug.&RandAug. 67.6 54.6 37.5 57.3

Table 2. Ablation study for different configurations of views on ImageNet-LT. All models run for 90 epochs with the same training scheme.

C.3. Confusion Matrix.

To clearly show where the models are getting confused on long-tailed data, we illustrate the confusion matrix of prediction
results on CIFAR-10-LT in Figure 1. With vanilla cross-entropy, the model tends to misclassify low-frequency artifactory
categories as high-frequency artifactory categories and low-frequency animal classes as high-frequency animal classes. With
logit compensation, misclassification of low-frequency classes is greatly eased. With the proposed BCL, low-frequency
classes are more correctly predicted than high-frequency classes, and the accuracies of high-frequency classes are also im-
proved.

(a) (b) (c)

Figure 1. Illustration of confusion matrix of prediction results on CIFAR-10-LT for different models.

C.4. Visualization of Learned Features.

Similar to [4], we visualize the 2-dimensional MLP output feature learned by SCL and BCL on CIFAR-10-LT. Features
of different classes learned by BCL distribute more uniform on the sphere and are more separable than SCL.
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