Dual Cross-Attention Learning for Fine-Grained Visual Categorization and Object Re-Identification Supplementary Material

Haowei Zhu, Wenjing Ke, Dong Li, Ji Liu, Lu Tian, Yi Shan Advanced Micro Devices, Inc., Beijing, China

{haowei.zhu, wenjing.ke, d.li, lu.tian, yi.shan}@amd.com

1. Overview

In this supplementary material, we present more experimental results and analysis.

- We test different inference architectures.
- We provide additional ablation study on effect of ratio of local query selection.
- We show more visualization results of generated attention maps on different benchmarks.
- We conduct experiments on more Transformer baselines.

2. Different Inference Architectures

Our default inference architecture is that all the PWCA modules are removed and only SA and GLCA modules are used. For FGVC, we add class probabilities output by classifiers of SA and GLCA for prediction. For Re-ID, we concat two final class tokens of SA and GLCA as the output feature for prediction. We also test two different inference architectures: (1) "SA": using the last SA module for inference. (2) "GLCA": using the GLCA module for inference. Table 1 and 2 present the detailed performance with different baselines on all the FGVC and Re-ID benchmarks, respectively. The results show that only using the SA or GLCA module can obtain similar performance with our default setting. It is also noted that "SA" has the same inference architecture with the baseline by removing all the PWCA and GLCA modules for inference, which does not introduce extra computation cost.

3. Ablation Study on Effect of *R*

We test different choices of the ratios of selecting highresponse regions as local query. Figure 7 shows that different choices of R can obtain similar performance. We set R = 10% for all the FGVC benchmarks and set R = 30% for all the Re-ID benchmarks as default in our method.

4. More Visualization Results

We show more visualization results by comparing selfattention and our cross-attention method. Figure 1, 2, 3 present the generated attention maps on different FGVC benchmarks. Figure 4, 5, 6 present the generated attention maps on different Re-ID benchmarks. The results show that our DCAL can reduce misleading attentions and diffuse the attention response to discover more complementary parts for recognition.

5. More Transformer Baselines

We conduct two more experiments on CaiT [2] and Swin Transformer [1]. CaiT-XS24 obtains 88.5% while our method obtains 89.7% top-1 accuracy on CUB. Swin-T obtains 84.9% while our method obtains 85.8% top-1 accuracy on CUB. For Re-ID on MSMT, Swin-T achieves 55.7% while we achieve 56.7% mAP. As locality has been incorporated by windows in Swin Transformer, we only apply PWCA into it.

References

- Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *ICCV*, 2021. 1
- [2] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going deeper with image transformers. In *ICCV*, 2021. 1

^{*}Equal contribution.

Model	SA (%)	GLCA (%)	SA+GLCA (%)		
DeiT-Tiny	84.4	83.6	84.6		
DeiT-Small	87.6	87.4	87.6		
DeiT-Base	88.7	88.5	88.8		
ViT-Base	91.3	91.4	91.4		
R50-ViT-Base	91.5	91.9	92.0		
(a) CUB-200-2011					
Model	SA (%)	GLCA (%)	SA+GLCA (%)		
DeiT-Tiny	89.2	87.8	89.4		
DeiT-Small	92.4	91.8	92.3		
DeiT-Base	93.9	93.5	93.8		
ViT-Base	93.5	92.9	93.4		
R50-ViT-Base	95.3	94.8	95.3		
(b) Stanford-Cars					
Model	SA (%)	GLCA (%)	SA+GLCA (%)		
DeiT-Tiny	86.9	86.7	87.4		
DeiT-Small	90.1	89.8	90.0		
DeiT-Base	92.5	92.3	92.6		
ViT-Base	91.4	91.1	91.5		
R50-ViT-Base	93.3	93.1	93.3		
(c) FGVC-Aircraft					

Table 1. Ablation study on different inference architectures for FGVC in terms of accuracy. SA: using SA as the last layer to output class probabilities. GLCA: using GLCA as the last layer to output class probabilities. SA+GLCA: combine the output of SA and GLCA for inference.

Model	SA (%)	GLCA (%)	SA+GLCA (%)		
DeiT-Tiny	44.8 / 68.1	44.8 / 68.1	44.9 / 68.2		
DeiT-Small	54.9 / 77.4	55.1 / 77.2	55.1 / 77.3		
DeiT-Base	62.2 / 83.1	62.3 / 83.1	62.3 / 83.1		
ViT-Base	63.9 / 83.2	63.9 / 83.1	64.0 / 83.1		
(a) MSMT17					
Model	SA (%)	GLCA (%)	SA+GLCA (%)		
DeiT-Tiny	71.6/85.1	71.7 / 84.9	71.7 / 84.9		
DeiT-Small	77.4 / 88.0	77.4 / 87.8	77.4 / 87.9		
DeiT-Base	80.2 / 89.9	80.2 / 89.6	80.2 / 89.6		
ViT-Base	80.1 / 89.1	80.1 / 89.0	80.1 / 89.0		
(b) DukeMTMC-ReID					
Model	SA (%)	GLCA (%)	SA+GLCA (%)		
DeiT-Tiny	79.7/91.8	79.7 / 91.8	79.8 / 91.8		
DeiT-Small	85.2/94.1	85.2 / 94.0	85.3 / 94.0		
DeiT-Base	87.2/94.5	87.2 / 94.4	87.2 / 94.5		
ViT-Base	87.5 / 94.8	87.5 / 94.7	87.5 / 94.7		
(c) Market1501					
Model	SA (%)	GLCA (%)	SA+GLCA (%)		
DeiT-Tiny	74.1 / 94.6	74.0 / 94.6	74.1 / 94.7		
DeiT-Small	78.0/95.9	78.0/95.9	78.1 / 95.9		
DeiT-Base	79.9/96.6	80.0 / 96.6	80.0 / 96.5		
ViT-Base	80.1 / 96.9	80.2 / 96.9	80.2 / 96.9		
(d) VeRi-776					

Table 2. Ablation study on different inference architectures for object Re-ID in terms of mAP and rank-1 accuracy. SA: using SA as the last layer to output final feature. GLCA: using GLCA as the last layer to output final feature. SA+GLCA: combine the output of SA and GLCA for inference.

Figure 1. Visualization of the generated attention map for selfattention learning and our cross-attention learning on CUB-200-2011.

(a) SA vs. GLCA

Figure 2. Visualization of the generated attention map for selfattention learning and our cross-attention learning on Stanford-Cars.

Figure 3. Visualization of the generated attention map for selfattention learning and our cross-attention learning on FGVC-Aircraft.

(a) SA vs. GLCA

Figure 4. Visualization of the generated attention map for selfattention learning and our cross-attention learning on Market-1501.

Figure 5. Visualization of the generated attention map for self-attention learning and our cross-attention learning on DukeMTMC-ReID.

(a) SA vs. GLCA

Figure 6. Visualization of the generated attention map for selfattention learning and our cross-attention learning on VeRi-776.

Figure 7. Effect on the ratio of local query selection. DeiT-Tiny is used for CUB and ViT-base is used for MSMT17. We set R = 10% for all the FGVC benchmarks and set R = 30% for all the Re-ID benchmarks as default in our method.