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Below are additional details regarding our model and ex-
periments.

A. Datasets
mini-ImageNet. This dataset [10, 14] is widely used in
few-shot classification. It contains 100 randomly chosen
classes from ImageNet [12] . There are 64 training (base)
classes, 16 validation (novel) classes, and 20 test (novel)
classes among the 100 classes. There are 600 images in
each class. We adopt the split provided in [10].

tiered-ImageNet. An ImageNet with a hierarchical struc-
ture was used to create the tiered-ImageNet. Categories of
classes are divided into 34 categories, each of which con-
tains 351, 97, and 160 classes for training, validation, and
test, respectively. Please note the training and test classes
are semantically disjoint. We follow the common split in [1]
and 84 by 84px resolution.

CIFAR-FS. This dataset has 100 classes, each with 600
examples in CIFAR-100 [5], on which this dataset is based
on. We use the 64 training, 16 validation, and 20 test classes
provided by [2].

CUB. There are 200 classes, each representing a bird
species, in this fine-grained dataset. Following the setting
in [2] , we divide our classes into three groups: 100 train-
ing, 50 validation, and 50 testing classes.

B. Feature Extraction and Pre-processing
ResNet-12 ResNet-12A is the pre-trained backbone net-
work used in [16]. For all of our transductive and semi-
supervised experiments using this network, we adopt ex-
actly the same pre-processing as [16], which includes nor-
malizing feature vectors by their `2 norms.

*The corresponding author. Code: https://github.com/
allenhaozhu/EASE

WRN-28-10 WRN-28-10 is the pre-trained network used
in [8] and [3]. To provide fair comparisons with
PT+MAP [3], we adopt exactly the same pre-processing
as [3]. In the all experiments, we apply the power trans-
form and normalize feature vectors by their `2 norms.

C. Hyperparameters
In Eq. (8), we have a parameter for the rank-K. In fact,

K is the same as K-way. In Eq. (6), there is a parameter
α that controls the trade-off between the similarity matrix
and the dissimilarity matrix, and we set it as 40 for all ex-
periments. In Algorithm 1, we set λ = 10, ε = 0.001 and
α = 0.2 (please note here the α is the parameter to control
updating the new estimate center).

D. Other Experiments
We evaluate our approach on two few-shot clas-

sification benchmarks, mini-ImageNet [14] and tiered-
ImageNet [11], all used in transductive and semi-supervised
FSL works [4,7,9,11,13]. On these benchmarks, we use the
standard evaluation protocols [6]. The results of the trans-
ductive and semi-supervised FSL evaluation, together with
comparisons to previous methods, are summarized in Ta-
bles 1, and are detailed and discussed in the following sec-
tions. The performance numbers are given as accuracy %,
and the 0.95 confidence intervals are reported. The tests
are performed on 10,000 random 5-way episodes, with 1 or
5 shots (number of support examples per class), and with
15 queries per episode (unless otherwise specified). For
each dataset, the standard train, validation and test splits are
used. Training subset was used to pre-train the DenseNet
backbone (from scratch) with a regular multi-class classi-
fier on all training classes, same as in [15]. The validation
data was used to select the best model along the training
epochs and to choose the hyper-parameters. Episodes gen-
erated from the test data (with test categories unseen during
training and validation) were used for meta-testing to obtain
the final performance.
Comparison with other clustering Methods. To demon-
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strate the effectiveness of conStraIned wAsserstein MEan
Shift clustEring (SIAMESE), we integrated EASE with
clustering methods other than SIAMESE. Specifically, we
compared SIAMESE with k-means and Mean Shift Propa-
gation (MSP) mentioned in [6]. As can be seen from Ta-
ble 1, on both transductive FSL benchmarks, the top per-
forming variant of EASE consistently outperforms all the
previous (transductive and inductive) SOTA and SIAMESE
significantly outperforms other clustering methods.

Unbalanced (long-tail) test classes distribution in un-
labeled data. In previous transductive FSL works, bal-
anced test tasks (in terms of the number of queries for each
class) were used. While this is fine for the experimental
evaluation, in practical applications, it is unrealistic that
the bulk of queries sent for an off-line evaluation will be
class-balanced. In fact, class-skew (lack of balance) is a
very likely case. To test the effect of query set skew, we
have evaluated the proposed method under varying levels
of class-skew controlled through the so-called ‘unbalanced
factor’ parameter R: in each test episode, for each class 15 +
uni([0, R]) query samples were randomly chosen (here uni
refers to the uniform distribution). Figure 1 shows the effect
of varying R from 10 to 50, while at the extreme setting (50)
above factor 4 skew is possible between the classes in terms
of the number of associated queries. Nevertheless, as can
be seen from the figure, the effect of lack of balance on the
performance of EASE is minimal, leading to at most 2%
performance loss at R = 50. Interestingly, when the im-
balance factor is 10, EASE appears performing better than
in the balanced setting (mini-ImageNet). This is likely be-
cause although the queries are unbalanced, the larger num-
ber of queries still provides an advantage to our method.

Out-of-distribution noise (distraction classes) in unla-
beled data. Unlabeled data may become contaminated with
samples ‘unrelated’ to the few-shot task T target classes dis-
tribution in many applications. This is most likely to hap-
pen in a semi-supervised FSL context. As in transductive
FSL, the unlabeled samples are the queries which are typ-
ically assumed to solely belong to the target classes distri-
bution. This form of the noise is examined in the semi-
supervised FSL literature using additional random samples
from random ‘distracting’ classes introduced into the unla-
beled set. We set the number of distracting classes between
0 and 7, and show the comparison between our method and
other STOA methods of semi-supervised few-shot learning.
Fig. 2 shows that in this setting the performance of EASE
drops very quickly as distracting classes increasing because
distracting classes ruins the hypothesis of block diagonal
prior. At the same time, we can see that other methods are
also very sensitive to this setting and also suffer the similar
performance drops.

(a) mini-ImageNet

(b) tiered-ImageNet

Figure 1. Unbalanced setting performance on (a) mini-ImageNet
and (b) tiered-ImageNet.

Figure 2. Performance w.r.t. the unlabeled data noise.
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Table 1. Comparison of test accuracy against state-of-the-art methods for 1-shot and 5-shot classification given EASE (ours)+clustering,
where SIAMESE is our clustering variant. In fact, all variants of EASE are our variants but k-means and MSP were used before in FSL.

mini-ImageNet tiered-ImageNet

Methods Network 1-shot 5-shot 1-shot 5-shot

SimpleShot(Baseline) [15] DenseNet 65.77 ± 0.19 82.23 ± 0.13 71.20 ± 0.22 86.33 ± 0.15
LaplacianShot [17] DenseNet 75.57 ± 0.19 84.72 ± 0.13 80.30 ± 0.20 87.93 ± 0.15
TAFSSL(PCA) [6] DenseNet 70.53 ± 0.25 80.71 ± 0.16 80.07 ± 0.25 86.42 ± 0.17
TAFSSL(ICA) [6] DenseNet 72.10 ± 0.25 81.85 ± 0.16 80.82 ± 0.25 86.97 ± 0.17

EASE DenseNet 74.30 ± 0.26 82.08 ± 0.17 82.67 ± 0.25 87.60 ± 0.17

EASE+k-means DenseNet 76.41 ± 0.27 84.09 ± 0.15 83.57 ± 0.25 87.94 ± 0.15
EASE+MSP DenseNet 77.54 ± 0.26 85.35 ± 0.14 84.63 ± 0.25 88.25 ± 0.15

EASE+SIAMESE (ours) DenseNet 79.42 ± 0.27 86.76 ± 0.14 86.17 ± 0.25 90.54 ± 0.15
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