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Figure 1. Visualization of log-cosh loss with a hyperparameter p.

1. Visualization of log-cosh loss

Since the loss that used to prevent space collapse is cal-
culated with samples in the minibatch, we adopt a Log-
Cosh loss considering the random permutation caused by
minibatch training. Log-cosh loss imposes a small penalty
for small permutation and a hyperparameter p is further
adopted to smooth the loss curve around zero, which we
set to 0.2. We visualize the log-cosh loss in Fig. 1.

2. More Experimental Demonstration on the
ADG Incomplete Alignment

In addition to PACS, we provide visualization results on
VLCS (Fig. 2) and Camelyonl7 (Fig. 4) to show the in-
complete alignment of existing adversarial domain general-
izaiton methods as DANN [3] and CDANN [10].

3. More Experimental Demonstration on the
ADG Space Collapse

In addition to PACS, we provide visualization results on
VLCS (Fig. 3) and iWildCam (Fig. 5) to show the space
collapse cased by DANN [3] and CDANN [10]. ADG leads
to a smaller space collapse for datasets with a large num-
ber of domains, e.g. iWildCam with 323 domains. This
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should be attributed to the fact that the large number of do-
mains makes the domain discriminator hard to train and thus
cannot exert an significant influence on the representation
learning.

4. Experimental Results on Domainbed

We conduct experiments on DomainBed to validate the
effectiveness of our method.

4.1. Experimental Settings

DomainBed contains an extensive set of domain gener-
alization methods, including IRM [1], Group DRO [13],

Mixup [16, 17], MLDG [8], CORAL [15], MMD [9],
DANN [3], CDANN [10], MTL [2], SagNet [II],
ARM [18], V-REx [7], RSC [5], Fish [14], and Fishr [12].

We use the training-domain validation set for model selec-
tion, and results for compared methods are retrieved from
the DomainBed Benchmark [4] or [12]. We follow the con-
figuration of DomainBed, and run all the experiments with
three random seeds. For each seed, we make 20 hyperpa-
rameter queries and detail hyperparameter settings are sum-
marized in Sec. 4.3. Note, DomainBed is a collection of
synthetic datasets that do not necessarily reflect real-world
domain shifts. Moreover, for some datasets the performance
of ERM for in-domain vs out-of-domain data are very simi-
lar, suggesting that the domain shifts are not significant and
that it may not be appropriate to apply approaches other
than ERM. Thus, we focus our experimental attention more
on the Wilds dataset, which represents real-world datasets
with significant domain shifts. Given these issues, our goal
with DomainBed is simply to demonstrate that LADG can
perform competitively to other DG approaches.

4.2. Results for DomainBed

We summarize the results in Table 1 and detailed re-
sults on each dataset are shown in Tables 2-8. According
to the results, the performance of our method are among the
SOTA methods. Moreover, compared to other ADG meth-
ods, i.e., DANN [3] and CDANN [10], LADG achieves sig-
nificant improvements for almost all datasets. For exam-
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Figure 2. Visualization of learned representation on the VLCS dataset. * denotes testing domain. Different shapes (colors) represent
different classes (domains).
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Figure 3. The feature space will collapse with adversarial domain alignment on VLCS. We pretrain the model for 600 steps with ERM and
then ADG methods are applied. Our method trained with L., could avoid space collapse.
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Figure 4. Visualization of learned representation on the Camelyon17 dataset. * denotes OOD validation domain. Different shapes (colors)

represent different classes (domains).
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Figure 5. The feature space on iWildCam. We skip the pretraining stage with ERM. iWildCam contains much larger number of domains

and the space collapse is not significant.



ple, our method gains 2.3% and 3.3% improvements over
DANN and CDANN, respectively, on PACS. This should
be attributed to the fine-grained domain alignment by the
localized domain discriminator and also the loss to prevent
the space collapse.

4.3. Hyperparameter Settings

We pretrain the featurizer ¢, primary task predictor w,
and domain discriminator for our method. To ensure a fair
comparison, we subtract the total number of training steps
and epochs by that of pretrainining to train our method. The
discriminator is composed of a GatedGCN layer and two
fully connected layers.

We provide a hyperparameter selection range for Do-
mainBed. We search the 7 from {1,2}, v from {0.1, 1},
and X from {0.1, 0.5}. We follow other configurations as the
ERM of DomainBed but fix the batchsize as default for all
datasets [4]. That is, for non small-scale datasets, we fix the
batchsize as 32, and randomly select the learning rate from
1QUniform(=5,-3.5) weight decay from 1QUniform(=6,~2) ' 54
dropout rate from {0,0.1,0.5} following the default set-
tings of DomainBed [4]. For small-scale datasets including
variants of MNIST, we fix the batchsize as 64 and randomly
select the learning rate from 10Unform(—4.5,=3.5)

For Wilds [6], we search the 7 from {1,2}, 7 from
{0.1,1}, and A from {0.1,0.5}. We basically follow the de-
fault settings of Wilds for other hyperparameters which are
summarized in Table 9.
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Algorithm  Colored MNIST  Rotated MNIST VLCS PACS OfficeHome Terralncognita DomainNet Avg

ERM 51.5£0.1 98.0 £ 0.0 775+04 855+02 665+03 46.1 £ 1.8 409+0.1 66.6
IRM 52.0+£0.1 97.7+0.1 785+£05 835+08 643+£22 47.6 £0.8 339+28 654
GroupDRO 52.1£00 98.0 £ 0.0 76.7+0.6 844+08 66.0+0.7 432+ 1.1 333£02 648
Mixup 521+£02 98.0 £ 0.1 774+£06 84.6+06 681+03 479 £0.8 39.2+0.1 66.7
MLDG 51.5+0.1 979+ 0.0 772+£04 849+10 66.8+0.6 477£0.9 412+£0.1 66.7
CORAL 51.5£0.1 98.0 £ 0.1 788 £0.6 862+03 68.7+0.3 47.6 £ 1.0 415+0.1 675
MMD 51.5+£02 979+ 0.0 775+£09 84.6+05 663=£0.1 422+1.6 234+95 633
MTL 514 £0.1 97.9+£0.0 772+04 84.6+05 66405 456 £ 1.2 40.6 0.1 66.2
SagNet 51.7+£0.0 98.0+ 0.0 77.8+0.5 863+02 681+0.1 48.6 £ 1.0 403 +£0.1 672
ARM 56.2 £ 0.2 98.2 +0.1 776 +£03 851+04 64.8+03 455+£0.3 355+02 66.1
VREx 51.8 £ 0.1 979+ 0.1 783+02 849+06 664+0.6 46.4 £ 0.6 33.6£29 65.6
RSC 51.7+£02 97.6 £ 0.1 771 £05 852+£09 655+£09 46.6 £1.0 389+05 66.1
Fish 51.6 £0.1 98.0 £ 0.0 77.8+03 855+03 68.6x+04 451+£13 427+02 67.1
Fishr 52.0+£0.2 97.8 £ 0.0 778 £0.1 855+04 67.8=£0.1 474+ 1.6 41.7+£0.0 67.1
DANN 515+03 97.8 £0.1 78.6+£04 83.6+04 659+0.6 46.7 £ 0.5 383+0.1 66.1
CDANN 51.7+£0.1 979 £0.1 77.5+0.1 826+09 658+13 458 +£1.6 383£03 65.6
Ours 52.0+£0.2 97.8 £ 0.1 77.7+04 859+£08 66.7x1.0 477+£12 402+£0.6 669

Table 1. Results on Domainbed. We use training-domain validation set for model selection.

Algorithm +90% +80% -90% Avg
ERM 71.7+0.1 729+02 10.0+0.1 515
IRM 725+£0.1 733+£05 102+03 52.0
GroupDRO 73.1+03 73.2+02 100+£0.2 521
Mixup 727+£04 734+£0.1 101+£0.1 52.1
MLDG 71.5£02 731+£02 98=£0.1 515
CORAL 71.6+03 73.1+0.1 99+£0.1 515
MMD 714+03 73.1+£02 99+£03 515
MTL 709+02 728+03 105+0.1 514
SagNet 71.8£0.2 73.0+£02 103+£00 51.7
ARM 820+£05 765+03 102+0.0 562
VREx 724+£03 729+£04 102+00 51.8
RSC 71.9+03 73.1+02 10.0+02 51.7
Fish - - - 51.6
Fishr 723+£09 735+£02 101+£02 52.0
DANN 714+09 73.1+£0.1 10.0+0.0 515
CDANN 720+£02 73.0+£02 102+0.1 51.7
Ours 729+03 73.0+02 10.0x£0.1 52.0

Table 2. Results on Colored MNIST. We use training-domain validation set for model selection.



Rotated MNIST 0 15 30 45 60 75 Avg
ERM 959+0.1 989+00 988+£00 989+£00 989+£0.0 964+£0.0 98.0
IRM 955+0.1 988+02 987+£0.1 986+£0.1 987£00 959£02 977
GroupDRO 95.6+0.1 989+0.1 989+£0.1 99.0£0.0 989+£0.0 965+£0.2 98.0
Mixup 958+03 989+00 989+£00 989+£0.0 988+0.1 965+£03 98.0
MLDG 958+0.1 989+0.1 99.0£0.0 989+£0.1 99.0£00 958+03 979
CORAL 958+03 988+00 989+£00 99.0+£0.0 989+£0.1 964+£02 98.0
MMD 95.6+0.1 989+0.1 99.0£0.0 99.0£0.0 989£00 960£02 979
MTL 95.6+0.1 99.0+£0.1 99.0£0.0 989+£0.1 990£0.1 958=£02 979
SagNet 959+03 989+0.1 99.0£0.1 99.1+£0.0 99.0+£0.1 963+£0.1 98.0
ARM 96.7+02 991+£00 99.0£0.0 99.0£0.1 991£01 965=+£04 982
VREXx 959+02 99.0+£0.1 989+£0.1 989+£0.1 987£01 962+£02 979
RSC 948 +£05 987+0.1 988+£01 988+00 989+0.1 959+£02 97.6
Fish - - - - - - 98.0
Fishr 95.0+03 985+00 992+£0.1 989+£0.1 989+£0.1 965=£00 978
DANN 95.0+£05 989+£0.1 99.0£00 99.0£0.1 989£00 963=+£02 978
CDANN 957+£02 988+0.0 989+£01 989+0.1 989+0.1 96.1£03 979
Ours 949+02 989+£0.1 991+£00 99.0+£0.1 98.6=£01 964+£02 978

Table 3. Results on Rotated MNIST. We use training-domain validation set for model selection.

Algorithm A C P S Avg
ERM 84.7+04 80.8+06 9724+03 793+10 855
IRM 848 +13 764+11 967+06 76.1+1.0 835
GroupDRO 83.5+09 79.1+£06 96.7+03 783+2.0 844
Mixup 86.1£05 789+08 97.6+0.1 758+18 84.6
MLDG 85.5+14 80.1+17 9744+03 76.6+1.1 849
CORAL 883+02 800+05 9754+03 788+13 862
MMD 86.1 =14 7944+09 96.6+02 765+05 84.6
MTL 875+£08 771+£05 964+08 773+18 84.6
SagNet 874+£10 80.7x06 97.1+01 80.0+04 863
ARM 86.8+£06 768+05 974+£03 793+12 851
VREx 86.0+16 79.1+£06 969+05 77.7+1.7 849
RSC 854+08 797+18 976+03 782412 852
Fish - - - - 85.5
Fishr 884+£02 787+07 97.0+0.1 77.8+2.0 855
DANN 864 +08 774+08 973+04 735+23 83.6
CDANN 846+18 755+09 96.8+03 735+06 82.6
Ours 855+£05 813+08 97.0+09 79.7+17 859

Table 4. Results on PACS. We use training-domain validation set for model selection.



Algorithm C L S \' Avg

ERM 97704 643+09 734+£05 746=£13 775
IRM 98.6+0.1 649+09 734x+06 77309 785
GroupDRO 973 +03 634+09 695+08 76.7+0.7 76.7
Mixup 983+06 648+10 72105 743+£08 774
MLDG 974+02 652+07 71.0x14 753+£10 772
CORAL 983+0.1 661+12 734+£03 775+12 788
MMD 97.7+0.1 640x+1.1 728+02 753+33 775
MTL 97.8+04 643+03 715x07 75317 772
SagNet 979+04 645+05 71413 77505 778
ARM 98.7+02 63.6+07 713x12 767+£06 77.6
VREXx 984+03 644+14 741+£04 762+£13 783
RSC 979+0.1 625+07 723+x12 756+£08 77.1
Fish - - - - 77.8
Fishr 989+03 640+05 715+02 768+0.7 77.8
DANN 9.0+£03 651+14 731+03 772+£06 78.6
CDANN 971+03 651+12 70708 771x15 775
Ours 976 +0.8 66.0+02 704+24 76804 77.7

Table 5. Results on VLCS. We use training-domain validation set for model selection.

Algorithm L100 L38 L43 L46 Avg
ERM 498 +44 421+£14 569+1.8 357+£39 46.1
IRM 546+13 398+19 562+1.8 39.6+£0.8 47.6
GroupDRO 412+0.7 38.6+21 56709 364+21 432
Mixup 59.6+20 422+14 559+08 339+14 479
MLDG 542+£30 443+1.1 556+£03 369+22 477
CORAL 516 £24 422+£10 570+1.0 398+£29 476
MMD 419+£30 348+1.0 57.0£19 352+18 422
MTL 493+£12 396+£63 556=£1.1 37808 45.6
SagNet 53.0+£29 43.0+25 579+06 404+13 48.6
ARM 493+£0.7 383+£24 558+£08 387£13 455
VREXx 482+43 41713 568=+£08 387+3.1 464
RSC 502+22 392+14 563+14 408+0.6 46.6
Fish - - - - 45.1
Fishr 502+39 439+08 557+22 398+1.0 474
DANN 51.1+£35 40.6+06 574+05 377+1.8 46.7
CDANN 470£19 413+£48 549+£1.7 398+£23 458
Ours 50.6 3.0 455+1.7 550x14 397+£3.1 47.7

Table 6. Results on Terralncognita. We use training-domain validation set for model selection.



Algorithm A C P R Avg
ERM 61.3+0.7 524+03 758=£0.1 766+£03 665
IRM 589+£23 522+16 721£29 740+£25 643
GroupDRO 604 +0.7 527£10 750+0.7 76.0+0.7 66.0
Mixup 624+08 548+06 769+03 783+02 68.1
MLDG 61.5+09 532+06 750£12 77.5+04 6638
CORAL 653+04 544+£05 765+£0.1 784+£05 687
MMD 604+0.2 533+03 743£01 774+£06 663
MTL 61.5+0.7 524+£06 749+£04 768+£04 664
SagNet 634+02 548+04 758+04 783+03 68.1
ARM 589+08 51.0+£05 741£01 752+03 648
VREx 60.7+09 530+£09 753£01 766+05 664
RSC 60.7+14 514+03 748=£1.1 751+£13 655
Fish - - - - 68.6
Fishr 624+05 544+04 762£05 783+£0.1 678
DANN 599+13 530+03 73.6£07 769+£05 659
CDANN 61.5+14 504+24 744£09 766+£08 658
Ours 639+1.1 525£045 732£0.6 774+£07 66.7

Table 7. Results on OfficeHome. We use training-domain validation set for model selection.

DomainNet clip info paint quick real sketch Avg
ERM 58.1+03 188+03 467+03 1224+04 596+0.1 498+04 409
IRM 485+28 150+15 383+43 109+05 482452 423+31 339
GroupDRO 472+05 17.5+04 338+05 93+£03 51.6+04 401+06 333
Mixup 55703 185+05 443+05 125+£04 558+03 482+£05 392
MLDG 59.1+£02 191+£03 458407 1344+£03 596+02 502+£04 412
CORAL 592401 197+02 466+03 1344+04 598+02 501£06 415
MMD 321 £133 11.0£46 268£11.3 87+£21 327+£138 289+119 234
MTL 579+05 185+04 460+0.1 125+0.1 595+03 492+0.1 40.6
SagNet 57703 190+£02 453+03 127+£05 581+05 488=+£02 403
ARM 497+03 163+05 409+1.1 94 +£0.1 53.44+04 435+£04 355
VREx 473+35 160+1.5 358+46 109+03 496+49 420+£30 336
RSC 550+12 183+05 4444+06 122402 557+07 478+09 389
Fish - - - - - - 42.7
Fishr 582+05 202+£02 477+£03 127+£02 603+02 508=£0.1 41.7
DANN 53.1+02 183+0.1 4424+07 11.84+0.1 5554+04 468+£06 383
CDANN 546+04 173+£0.1 437+£09 1214+0.7 5624+04 459£05 383
Ours 558+0.7 185+08 465+12 119+02 594+09 49.1£07 402
Table 8. Results on DomainNet. We use training-domain validation set for model selection.
iWildCam Camelyonl7 PovertyMap FMoW CivilComments Amazon
batchsize 32 120 64 64 32 16
# domains per batch 4 3 8 4 4 4
Featurizer resnet50  densenetl21 resnetl8 densenet121 distilbert distilbert
Ir 3e-5 0.001 0.001 0.0001 le-5 le-5

Table 9. Settings for Wilds. We basically follow the default settings of Wilds.



