
Supplementary Material for
NICE-SLAM: Neural Implicit Scalable Encoding for SLAM

Zihan Zhu1,2∗ Songyou Peng2,4* Viktor Larsson3 Weiwei Xu1 Hujun Bao1

Zhaopeng Cui1† Martin R. Oswald2,5 Marc Pollefeys2,6

1State Key Lab of CAD&CG, Zhejiang University 2ETH Zurich 3Lund University
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In the supplementary material we present the following:

• Implementation details and parameters (Section A)

• Additional experiments and ablations (Section B)

A. Implementation Details
A.1. Frustum Feature Selection

The grid-based representation allows us to only opti-
mize the geometry within the current viewing frustum while
keeping the rest of the scene geometry fixed. However,
naive optimization for all voxels will affect features even
just slightly outside the viewing frustum because of trilin-
ear interpolation. This is illustrated in Fig. Aa. The rays
A and B are viewing rays from the current frame and an
active keyframe, respectively. Including these rays in the
optimization will update the feature at X (marked in the fig-
ure) due to trilinear interpolation. However, updating this
feature will also affect the ray C coming from an inactive
keyframe.

To solve the problem, we propose to only update fea-
tures fully inside the current viewing frustum during the
optimization, see Fig. Ab. In this way, it will not only pre-
serve the previously reconstructed geometry, but also signif-
icantly reduce the number of parameters during optimiza-
tion.

A.2. Hierarchical Feature Grid Initialization

Coarse-level Feature Grid. The coarse-level feature grid
is randomly initialized in all experiments.
Mid-level Feature Grid. The mid-level feature grid is also
randomly initialized in all experiments, except for the re-
sult shown in Fig. 7 in the main paper, where it is initial-
ized to free space to better visualize the predictions from
the coarse-level grid. Empirically we find that the random
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(a) Interpolation problem. (b) Feature selection.

Figure A. 2D illustration of the feature grid. The lattice points cor-
respond to features. The optimized and fixed features are shown
in red and blue respectively.

initialization gives slightly better convergence compared to
initializing from a fixed feature vector corresponding to the
free space.
Fine-level Feature Grid. The fine-level feature grid is ini-
tialized to ensure the output of the fine-level decoder f2

as zero, as it is added in a residual manner onto the oc-
cupancy predicted from the mid-level features. This guar-
antees a smooth energy transition in the coarse-to-fine op-
timization. During the training of the fine-level decoder
from ConvONet [4], we add additional regularization loss
to enforce that, if the fine-level feature is zero, no matter
what the concatenated mid-level feature is, the output resid-
ual should always be zero. This regularization allows us to
zero-initialize the fine-level grid at runtime.

A.3. Justification for Design Choices.

Why 3-level Feature Grids? We show in Fig. 8 in the
main paper that using hierarchical grids leads to better con-
vergence compared to a single level, and we find that the
current design guarantees a good balance between the qual-
ity and real-time capability / memory consumption (only 12
MB for Replica scenes). We also conduct an ablation study



Levels 2 3 4

FLOPs [×103] ↓ 58.45 104.16 155.95

Depth L1 [cm] ↓ 1.86 1.87 1.96
Acc. [cm] ↓ 2.87 2.78 3.15
Comp. [cm] ↓ 2.76 2.76 2.40
Comp. Ratio [< 5cm %] ↑ 91.24 91.37 93.60

Table A. Ablation on the Levels of Feature Grids. Reconstruc-
tion results on Replica room-0 with ground truth camera pose.

on the number of levels of feature grids in Table A. It shows
that the 3-level feature grid is a good balance between the
reconstruction quality and computational efficiency.
Why is the Mid-level Output not a Residual to the
Coarse-level Output? The coarse grid has a significantly
larger voxel size (side of > 1 meter) than the mid and fine
levels, so updating the coarse-level feature would affect a
large area. To ensure small local updates for efficiency, we
disconnect coarse level from mid and fine levels, and only
use coarse level for prediction.

A.4. Mesh Visualization

The reconstructed scene is represented implicitly using
hierarchical feature grids. We use the marching cubes al-
gorithm [3] to create a mesh for the visualization purpose.
For every observed point we predict its occupancy value us-
ing the fine-level decoder and color from the color decoder.
For those unseen points in the predicted regions (i.e. voxels
with partial observations in the coarse grid), we predict oc-
cupancy from the coarse-decoder and set the color to cyan
for visualization as shown in Fig.8 in our main paper and
the supplementary video. Other points are assigned zero
occupancy. The same resolution is used in marching cubes
for both iMAP∗ and NICE-SLAM.

A.5. Decoder Pretraining

We use the Synthetic Indoor Scene Dataset provided in
ConvONet [4] to pre-train the encoder-decoder. Further-
more, we use the Point Cloud Encoder instead of the Voxel
Encoder. All levels are trained with room grid64 setting in
ConvONet [4]. The feature dimension for all the feature
grids is 32. As for hyperparameters used for the pretraining
process, we follow the same setting as ConvONet [4].

A.6. Hyperparameters

Here we report detailed hyperparameters of online track-
ing and mapping used for both NICE-SLAM and iMAP∗.
We perform tracking for every frame and optimize the ge-
ometry every fifth frame, except for TUM RGB-D where
we optimize the geometry every frame. All parameters are
tuned to keep a good balance between the accuracy and the
efficiency.

Mapping Iterations 15 30 60 120 240

Depth L1 [cm] ↓ 2.31 2.03 1.87 1.74 1.59
Acc. [cm] ↓ 2.90 2.84 2.78 2.80 2.78
Comp. [cm] ↓ 3.14 2.91 2.76 2.65 2.50
Comp. Ratio [< 5cm %] ↑ 89.15 90.55 91.37 91.94 92.76

Table B. Ablation on Mapping Iterations. Reconstruction results
on Replica room-0 with ground truth camera poses.

NICE-SLAM. For scene geometry optimization, we use a
maximum of 60 iterations for all datasets. In terms of track-
ing, we use 10 iterations for small-scale synthetic datasets
(Replica and Co-Fusion). For the large-scale real datasets
including ScanNet and our self-captured scene, we use 50
iterations for tracking. For TUM RGB-D dataset we use
200 iterations.

The learning rate for tracking on Replica [6], TUM
RGB-D [7], ScanNet [1], Self-captured, and Co-Fusion [5]
are 1e−3, 1e−2, 5e−4, 3e−3, 1e−3 respectively. The
learning rate for optimizing the coarse-level is 1e−3, for
mid-level is 1e−1, for fine- and color-level is 5e−3. The
learning rate for selected keyframes’ camera parameters
during the mapping is 1e−3, except for Co-Fusion where
we set the learning rate to 0.
iMAP∗. For all datasets except TUM RGB-D [7], we
use 50 iterations for tracking and 300 iterations for joint
optimization. For TUM RGB-D [7], we use 200 and 300
iterations respectively. The learning rate for tracking on
Replica [6], TUM RGB-D [7], ScanNet [1], Self-captured,
and Co-Fusion [5] are 5e−4, 5e−3, 2e−3, 1e−3, 5e−4 re-
spectively. The learning rate for joint optimization is 2e−4.

B. Additional Experiments
B.1. Frame Loss Robustness

We simulate extreme frame loss on ScanNet
scene0000 00 by skipping 100 frames from frame
ID 2001 to 2100. As visualized in Fig. B, iMAP∗ struggles
to recover camera poses and scene geometry, even given
1500 iterations. In contrast, our NICE-SLAM is able to
recover the camera pose using only 300 iterations. This
is due to the use of coarse-level geometric representation
which improves the prediction capability.

B.2. Number of Mapping and Tracking Iterations

We show in Fig. C how the number of tracking and map-
ping iterations affects the tracking performance. We also
give ground truth camera pose and evaluate reconstruction
with different mapping iterations in Table B.

B.3. Frustum Feature Selection

To highlight the importance of current frustum feature
selection (see Section A.1), we run our system with and
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Figure B. Robustness to Frame Loss. We show the results at
frame 2100 after frame loss at frame 2000. The black trajectory is
the ground truth from ScanNet [1], and the red trajectory indicates
tracking results. The missing frames corresponds to the straight
line in the middle.

without the selection process. The results are shown in
Fig. D. Without fixing the border features, significant ar-
tifacts appear in the reconstruction (Fig. Aa).

B.4. More Results on Replica Dataset [6]

Here we provide the detailed results for all Replica
scenes. Table C shows the quantitative comparison when
considering the average metric values for 5 consecutive
runs, and only evaluate without unseen regions that are out-
side all camera’s viewing frustums. What is more, as done
in [8] we also report the best metrics in 5 consecutive runs
under all regions in Table D. As can be noticed, our iMAP
re-implementation iMAP∗ has similar performance over the
original iMAP.

In addition, to better highlight the performance differ-
ences, we provide additional visualizations using different
rendering settings in Fig. E.
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Figure C. Ablation on the tracking performance. ATE RMSE
(cm) is used as the metric.

B.5. More Results on ScanNet [1]

We show the 3D reconstruction process of iMAP∗ and
NICE-SLAM on ScanNet scene0000 in Fig. F.
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Figure D. Ablation on Frustum Feature Selection. We show our method with and without the frustum feature selection run on sequence
scene0000 00 in the ScanNet datasets. During these frames the camera is scanning other parts of the scene. The cutout shown in the figure
is part of the previously reconstructed geometry and should remain constant. The mesh is visualized with the vertex normal.
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Figure E. More Results on Replica Dataset [6]. We visualize the final reconstruction on two scenes including office-0 (top two rows) and
office-4 (bottom two rows). To better show the differences, we use different rendering settings. As can be visualized, our NICE-SLAM
produces high-quality geometry and colors.



room-0 room-1 room-2 office-0 office-1 office-2 office-3 office-4 Avg.

TSDF-Fusion
Res. = 512

(536.87MB)

Depth L1 [cm] ↓ 6.38 5.33 6.84 4.74 4.62 11.32 9.89 6.49 6.95
Acc. [cm] ↓ 1.87 2.48 1.69 1.14 0.96 1.63 2.08 1.74 1.70
Comp. [cm] ↓ 3.60 3.20 2.85 1.72 2.31 3.66 3.69 3.91 3.12
Comp. Ratio [< 5cm %] ↑ 88.33 89.82 90.38 93.55 90.35 86.74 85.35 86.31 88.85

TSDF-Fusion
Res. = 256
(67.10MB)

Depth L1 [cm] ↓ 6.69 5.47 7.47 4.97 5.28 12.30 11.17 7.20 7.57
Acc. [cm] ↓ 1.76 2.11 1.59 1.15 0.97 1.56 1.98 1.66 1.60
Comp. [cm] ↓ 3.85 3.36 3.33 1.93 2.68 4.17 4.22 4.37 3.49
Comp. Ratio [< 5cm %] ↑ 86.29 88.44 86.63 91.73 87.88 82.95 81.31 83.38 86.08

iMAP∗ [8]
(1.04MB)

Depth L1 [cm] ↓ 5.70 4.93 6.94 6.43 7.41 14.23 8.68 6.80 7.64
Acc. [cm] ↓ 5.66 5.31 5.64 7.39 11.89 8.12 5.62 5.98 6.95
Comp. [cm] ↓ 5.20 5.16 5.04 4.35 5.00 6.33 5.47 6.10 5.33
Comp. Ratio [< 5cm %] ↑ 67.67 66.41 69.27 71.97 71.58 58.31 65.95 61.64 66.60

DI-Fusion [2]
(3.78MB)

Depth L1 [cm] ↓ 6.66 96.82 36.09 7.36 5.05 13.73 11.41 9.55 23.33
Acc. [cm] ↓ 1.79 49.00 26.17 70.56 1.42 2.11 2.11 2.02 19.40
Comp. [cm] ↓ 3.57 39.40 17.35 3.58 2.20 4.83 4.71 5.84 10.19
Comp. Ratio [< 5cm %] ↑ 87.77 32.01 45.61 87.17 91.85 80.13 78.94 80.21 72.96

NICE-SLAM
(12.02MB)

Depth L1 [cm] ↓ 2.11 1.68 2.90 1.83 2.46 8.92 5.93 2.38 3.53
Acc. [cm] ↓ 2.73 2.58 2.65 2.26 2.50 3.82 3.50 2.77 2.85
Comp. [cm] ↓ 2.87 2.47 3.00 2.02 2.36 3.57 3.83 3.84 3.00
Comp. Ratio [< 5cm %] ↑ 90.93 92.80 89.07 94.93 92.61 85.20 82.98 86.14 89.33

Table C. Reconstruction Results for the Replica Dataset (Average of 5 runs).

room-0 room-1 room-2 office-0 office-1 office-2 office-3 office-4 Avg.

TSDF-Fusion
Res. = 512

(536.87MB)

Acc. [cm] 5.20 2.83 1.60 1.66 1.06 2.29 2.50 2.18 2.42
Comp. [cm] 5.05 4.60 4.50 1.06 9.57 5.84 4.16 4.30 4.89
Comp. Ratio [< 5cm %] 75.07 79.03 86.01 80.19 77.80 80.69 82.29 83.00 80.51

TSDF-Fusion
Res. = 256
(67.10MB)

Acc. [cm] 4.17 2.69 1.49 1.65 1.09 2.24 2.37 2.16 2.23
Comp. [cm] 5.65 4.85 5.04 10.88 9.85 6.94 4.93 4.95 6.64
Comp. Ratio [< 5cm %] 72.99 77.19 83.10 78.52 76.43 75.66 76.74 79.01 77.46

iMAP [8]
(1.04MB)

Acc. [cm] ↓ 3.58 3.69 4.68 5.87 3.71 4.81 4.27 4.83 4.43
Comp. [cm] ↓ 5.06 4.87 5.51 6.11 5.26 5.65 5.45 6.59 5.56
Comp. Ratio [< 5cm %] ↑ 83.91 83.45 75.53 77.71 79.64 77.22 77.34 77.63 79.06

iMAP∗ [8]
(1.04MB)

Acc. [cm] ↓ 4.07 3.86 5.17 5.40 4.04 5.23 4.30 4.98 4.63
Comp. [cm] ↓ 4.73 4.32 5.53 4.95 5.27 5.40 4.94 5.08 5.03
Comp. Ratio [< 5cm %] ↑ 79.12 76.21 69.19 77.47 76.70 70.53 73.51 71.81 74.32

DI-Fusion [2]
(3.78MB)

Acc. [cm] 2.02 277.51 24.94 61.73 1.75 2.63 2.97 2.11 46.96
Comp. [cm] 3.90 82.87 20.16 12.08 8.76 6.89 5.70 5.96 18.29
Comp. Ratio [< 5cm %] 86.58 24.77 41.50 74.20 79.22 73.36 70.24 78.26 66.02

NICE-SLAM
(12.02MB)

Acc. [cm] 2.97 3.23 3.46 5.47 3.33 4.40 3.55 2.87 3.66
Comp. [cm] ↓ 3.30 3.07 3.75 4.54 3.83 3.90 4.49 3.91 3.85
Comp. Ratio [< 5cm %] ↑ 89.51 86.01 81.14 85.27 88.01 82.61 79.49 85.33 84.67

Table D. Reconstruction Results for the Replica Dataset (Best in 5 runs). The numbers for iMAP are directly taken from [8].
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Figure F. 3D Reconstruction Process on ScanNet [1]. Due to our local map updates the resulting geometry is temporally more stable and
often less noisy compared to iMAP∗ [8].
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