
Registering Explicit to Implicit: Towards High-Fidelity Garment mesh
Reconstruction from Single Images – Appendix

In this appendix, we provide more results and details in
the following aspects: (1) more implementation details re-
garding the generation of explicit template mesh, network
training, and explicit fitting; (2) more evaluation on the ex-
plicit fitting stage; (3) more results reconstructed from the
in-the-wild images.

A. Explicit Template
As is illustrated in Figure.1, the explicit garment tem-

plate meshes Mt in ReEF covers twelve common clothes
categories. On top of the garment template meshes Mt, we
defined nine types of garment boundaries {Li

t}. Each type
of garment boundary is corresponded to a boundary implicit
boundary field {f i

b}.

B. Network Training
In the main paper, we have briefly introduced the gener-

ation of the implicit target shape field ff , implicit seman-
tic fields {f i

s} and the implicit boundary fields {f i
b}. This

section will describe the detailed training settings for the
implicit field generation networks.

B.1. Attention map generation.

As mentioned in the main paper, generating implicit se-
mantic fields {f i

s} and implicit boundary fields {f i
b} re-

quires curve-aligned features ϕh(I, π(X)) fetched from the
predicted semantic and boundary attention maps. To this
end, we generate ground truth boundary heat maps and se-
mantic heat maps as the supervision to guide the network’s
training: Firstly, we project the points sampled on differ-
ent semantic regions(or boundaries cylinders) to different
image planes with a weak-perspective camera. Then, we
generate Gaussian kernels centering at the projected posi-
tions with σ set to 2. Finally, the semantic/boundary heat
maps({Hi

s} and {Hi
b}) can be obtained by fusing the Gaus-

sian kernels with maximum operator on each image plane.

B.2. Loss Functions.

As mentioned in the main paper, we jointly train the gen-
eration module for coarse shape field fc, the semantic fields
{f i

s} and the boundary fields {f i
b} with coarse occupancy
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Figure 1. Garment templates supported by ReEF: (a) long-sleeve
upper clothing and long-sleeve dress; (b) short-sleeve upper cloth-
ing and short-sleeve dress; (c) no-sleeve upper clothing and no-
sleeve dress; (d) long-sleeve open coat; (e) short-sleeve open coat;
(f) no-sleeve open coat; (g) long pants; (h) short pants; (e) skirt.
Different kinds of garment boundaries are annotated with distinct
colors.

loss Lcocc, semantic attention loss Lhms, boundary atten-
tion loss Lhmb, boundary field loss Lb and semantic field
loss Ls :

L = Lcocc + Lhms + Lhmb + Lb + Ls (1)

where the loss for each component is the mean squared er-
ror(MSE) between the predicted value and the ground truth.

C. Explicit Fitting
In the main paper, we have explained the loss functions

adopted for deforming the explicit template progressively to
fit the implicit shape. On this top, we will provide further
details on the explicit fitting regarding the hyper-parameter
settings and the post processing.
Template initialization. With the purpose of setting up a
good initialization for the later stages, we optimized the
SMPL body parameters SMPL(θ, β) to be aligned with
the implicit clothed body and the predicted 2D joints Jgt:

Vpred, Jpred =SMPL(θ, β)

Lbody =MSE(J ′
pred, Jgt) + ηregReg(θ)

+ ηshapeCD(Vlres, Vpred)

(2)

where ηreg is set to 1e−3 and ηshape is set to 1.0.



Figure 2. Selected collar templates from our collar warehouse.

Boundary Fitting. To further fit the initialized template
to align with the garment boundaries of the implicit target,
we may deform the boundaries by minimizing the following
loss function:

Lb = f i
b(l

i
p) + ηeaAvg(eib) + ηedV ar(eib) (3)

where ηea is set to 0.025 and ηed is set to 2.5.
Shape Fitting The shape fitting stage will further deform
the boundary-aligned garment template to approach the im-
plicit target guided by the following loss function:

Lo = Dact(Mo)− ηpenTSDF (Msmpl)(Mo)

+ηbLb + ηlapLlap

(4)

where ηpen, ηb and ηlap are set to 0.1, 0.1 and 100 re-
spectively.
Post Processing As mentioned in the main paper, our
method could recover the garment styles and surface details
from an in-the-wild input image though it may fail to gener-
ate folded structure, i.e., the collars. Therefore, as Figure.2
illustrates, we firstly create a collar warehouse that covers
ten common collars categories. A multi-layer perceptron is
then adopted, which takes image features(for coarse shape
field generation) sampled from the collar area to predict the
type of the collar presents on the image.

D. Ablation Study
In this section, we compile a set of ablation experiments

to verify the effectiveness of each algorithmic component
for our explicit fitting module. We provide qualitative com-
parisons between our proposed method and the alternatives
that take other candidate settings: 1) Deform the garment
template mesh to fit the implicit target without pose initial-
ization, termed as w/o Init. 2) Deform the garment tem-
plate mesh to fit the implicit target without boundary ini-
tialization, termed as w/o Bound. 3) Deform the garment
template mesh to fit the implicit target without active area
probing, termed as w/o Probe. 4) The proposed full model,
termed as Ours.
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Figure 3. Qualitative comparison of the explicit garment meshes
generated under different ablation settings. The input image (a)
is followed by the garments generated with (b) w/o Init, (c) w/o
Bound, (3) w/o Bound and (4) Ours.

Figure.3 and Table.1 demonstrate the qualitative and
quantitative comparison between the proposed model and
the design alternatives. As the garments are diversified
shapes with varying geometrical details, it is inherently
hard to strike a balance between the reconstruction accuracy
and surface smoothness without proper initialization(w/o
Init and w/o Bound). Although the results generated with
w/o Probe can well reflect the garment styles and most
surface details from the image, the reconstructed surface
would be corrupted by non-relevant regions (e.g. the hands
for this case). In contrast, Ours can produce high-quality
garment meshes with accurate styles and surfaces details
highly identical to the input image.

Methods w/o Init w/o Bound w/o Probe Ours

Dist(×10−3) 3.52109 70.3211 3.56883 3.41651

Table 1. Comparison on registration accuracy between the pro-
posed method and the ablation alternatives.

E. More results on in-the-wild images
This section provides more results generated by our

method on in-the-wild images from the internet. As is
shown in Figure.4, given an in-the-wild image as input,
our model could produce high-quality garments with fine-
grained details and correct garment styles.



Figure 4. The results generated by our method on in-the-wild images. Each image is followed by the reconstructed layered garment mesh.


