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A. Additional Explanation
A.1. The Details of Evaluation Metrics

Following [1, 14], we report average incremental accuracy and average forgetting. Average incremental accuracy AN is
computed as the average accuracy of all the incremental phases ak (including the first phase), which compares the overall
incremental performance of different methods fairly,

AN =
1

N + 1

N∑
k=0

ak. (1)

Average forgetting is computed as the average forgetting of different tasks throughout the incremental process, which directly
measures the ability of different methods to resist catastrophic forgetting. The forgetting at phase k (k > 0) is calculated as
Fk = 1

k

∑k−1
j=0 f

k
j , where fk

j denotes the performance drop of classes first learned in phase j after the model has been
incrementally trained up to phase k > j as:

fk
j = max

i∈{j,···k−1}
ai,j − ak,j , (2)

where ai,j represents the accuracy of classes first in phase j after the model has been incrementally trained up to phase i.

A.2. Related Work on Distillation

Knowledge distillation [4] was first applied to the field of model compression, where complex models (teacher) are utilized
to provide soft labels for the training of lightweight models (student), thus facilitating deployment. Large models are over-
parameterized and tend to have better generalization. The key problem is how to efficiently transfer the knowledge contained
therein to small models. Various solutions have been proposed to enhance its effectiveness, such as response-based distillation
[3], feature-based distillation [8] and relation-based distillation [6]. At the same time, because of its similarity to human
learning style, it is gradually applied to mutual learning [13], continual learning and other fields. In class-incremental
learning, various response-based [7], feature-based [5] and even attention-based distillation [2] techniques are used to pass
discriminative features of the old network to the newly learned network, which has become an indispensable part. Unlike
the common exemplar-based class-incremental learning methods, we consider the calibration of distillation techniques in the
absence of old samples.

A.3. Detailed Values of the Curves

To facilitate the fair comparison of subsequent work, we report the detailed values (i.e. Figure 7 in the main text) of all
the accuracy curves in Table 1, 2 and 3.
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Dataset Phase
0 1 2 3 4 5 6 7 8 9

CIFAR-100 82.12 76.21 71.91 70.59 67.02 67.45 64.47 65.03 62.31 60.30
TinyImageNet 63.32 56.67 54.53 52.85 51.45 50.24 49.42 48.93 48.16 47.79

Dataset Phase
10 11 12 13 14 15 16 17 18 19 20

CIFAR-100 60.40 58.99 57.50 56.18 55.15 54.27 53.73 53.85 53.45 52.86 51.92
TinyImageNet 47.77 46.89 46.23 45.56 45.55 44.43 43.63 43.25 42.23 41.60 41.03

Table 1. Detailed values of classification accuracy under the setting of 20 phases.

Dataset Phase
0 1 2 3 4 5 6 7 8 9 10

CIFAR-100 80.00 74.09 70.53 67.58 65.63 63.52 61.41 59.62 58.33 58.16 56.57
TinyImageNet 63.32 55.93 52.53 50.15 48.86 48.03 46.44 45.45 43.77 42.59 41.18

ImageNet-Subset 82.80 73.38 71.40 69.54 68.00 67.23 65.48 64.47 61.82 61.16 59.32

Table 2. Detailed values of classification accuracy under the setting of 10 phases.

Dataset Phase
0 1 2 3 4 5

CIFAR-100 80.00 71.30 66.03 61.90 59.00 56.97
TinyImageNet 63.32 55.43 50.37 47.38 44.41 41.45

Table 3. Detailed values of classification accuracy under the setting of 5 phases.

A.4. Standard Deviation of the Average Incremental Accuracy.

All results of the average incremental accuracy (i.e. Table 3 in the main text) are evaluated on three different runs. To
show the stability of our method, we report its standard deviation on three runs. As shown in Table 4, random factors have
little impact on our scheme.

CIFAR-100 TinyImageNet ImageNet-SubsetMethods
P=5 P=10 P=20 P=5 P=10 P=20 P=10

LwF_MC [7] 45.93 27.43 20.07 29.12 23.10 17.43 31.18
MUC [12] 49.42 30.19 21.27 32.58 26.61 21.95 35.07
PASS [14] 63.47 61.84 58.09 49.55 47.29 42.07 61.80N

=
0

Ours 65.88±0.04 65.04±0.39 61.70±0.04 50.39±0.25 48.93±0.03 48.17±0.04 67.69±0.02

Table 4. Comparisons of the average incremental accuracy (%) with other methods on CIFAR-100, TinyImageNet, and ImageNet-Subset.
The red footnotes in the last row represent the standard deviation on three different runs.

A.5. More Visualization.

To better demonstrate the role of DSR and MBD during optimization, we show more visualization results with t-SNE. As
shown in Fig. 1 (a), although the old classes have slightly changed in the representation after multi-phase optimization, their
distances in the embedding space almost do not decline with our DSR. As shown in Fig. 1 (b), newly incremental classes are
easily closed to some of the old classes. Owing to our MBD, the novel features are promoted to differentiate from the old
class, thus improving the seperation of novel clusters.

To further evaluate performance of both old and new classes during training, we compare their accuracy on more setting
(i.e. 5 and 20 phases). As shown in Fig. 2, our method achieves similar performance between the old and new classes without
favoring one side due to overfitting, which is a prerequisite for a good incremental learning system.

To verify the role of the PSM, we conduct more data statistics on the incremental samples of 5 phases and 10 phases
setting. As shown in Fig. 3 and 4, the new classes have a large difference in similarity. And the intra-class fluctuations are
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also large, so different classes and samples involved in the optimization process will bring different changes. Therefore it
is important to reasonably place them in the two potentially conflicting processes of old feature distillation and new feature
learning. At the same time, the values are also different at different phases and settings, so it is also necessary to adapt this
changes in different situations, which will serve as a direction for our future research.
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Figure 1. More visualization results on the representation. (a) DSR maintains the discriminative features and inter-relations of old classes,
thus enhancing the clustering and separation of the distribution of old classes. (b) MBD results in a better distinction between similar
classes.

Figure 2. More confusion matrices of different methods on CIFAR-100. 5 phases and 20 phases settings are considered to further evaluate
the stability of our method on the old and novel classes.

A.6. Limitations.

While promising, we admit our work also has some limitations as follows. First, the focus of this paper is the exploration
of the self-sustaining representation expansion scheme, which is implemented with some simple and effective techniques,
such as residual adapter and structural reparameterization. More knowledge on the dynamic architectures can be taken into
account to further improve the retention and refinement of the old features. Second, although our method also works well
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(a) 1st phase (b) 4st phase

(c) 7st phase (d) 10st phase

Figure 3. More statistics of similarity on the setting of 10 phases.

(a) 1st phase (b) 7st phase

(c) 14st phase (d) 20st phase

Figure 4. More statistics of similarity on the setting of 20 phases.

in the CIL setting (i.e. Section B.3), it lacks exploration of the case where the number of exemplars changes. We believe
attempting to address above limitations would help to better explore the direction of NECIL and to adapt our scheme to more
interesting settings, such as CIL.
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B. Additional Results
B.1. Results of Different NECIL Settings and Methods

To prove the superiority of our proposed method, we conduct more comparative experiments under different settings on
CIFAR-100. [9] proposes a date-free CIL setting, which is similar to the setting of NECIL [14]. To the best of our knowledge,
this is the most relevant work up to the time of submission, which has been accepted by ICCV2021. Despite the similarities in
the task, the experimental setup is completely different. B0 setting is adopted in [9], where all 100 classes are divided into 5,
10, and 20 phases equally. B50 setting is adopted in [14], where the initial model is trained on 50 classes, and the remaining
50 classes are divided into 5, 10, and 20 phases. Thanks to their release of the code, we compare our method with [9] in both
B0 and B50 settings. As shown in Table 5 and 6, our method achieves average improvement of 2 and 3 points on B0 and B50
settings, respectively. At the same time, as [9] modify the DeepInversion [11] technique to synthesize samples for old classes
at each incremental phase, the training time (Time) of our method is much shorter. It can be seen that our method is reliable
in terms of effectiveness and efficiency. At the same time, to compare the two methods at all the phases in the incremental
process, we plot the detailed curves in Fig. 5. It can be seen that our method is superior in almost at all the settings and
phases, especially in the long-term setting.

CIFAR-100 (B0)

Method 5 phases 10 phases 20 phases
Acc(%) Time(s) Acc(%) Time(s) Acc(%) Time(s)

ABD [11] 43.90 1270 33.70 695 20.00 625
Ours 44.60 756 34.39 467 23.12 209

Table 5. Comparisons of the final performance (%) under different settings (i.e. 5, 10 and 20 phases). ‘Acc’ represents the average
incremental accuracy and ‘Time’ represents the training time during each phase. B0 represents the number of base classes is zero, where
all 100 classes are divided into 5, 10, and 20 phases equally. For comparison, we conduct all the experiments in the same setup and
hardware environment.

CIFAR-100 (B50)
Method 5 phases 10 phases 20 phases

ABD [11] 63.85 62.46 57.40
Ours 65.88 65.04 61.70

Table 6. Comparisons of the final performance (%) under different settings. B50 represents the number of base classes is 50, where the
initial model is trained on 50 classes, and the remaining 50 classes are divided into 5, 10, and 20 phases. B50 setting is consistent with our
experimental setup in the main text.

B.2 Further Analysis of the DSR Strategy

To further explore the impact of DSR strategy on the expandable representation during training, we design more experi-
ments. First, we remove the structural reparameterization part for comparison, where the main branch is not updated in the
whole incremental process. As shown in Table 7, the accuracy of model without structural reparameterization (i.e. w/o R) is
nearly one point lower. It demonstrates the necessity of updating of the base model, especially in the long-term incremental
setting. Second, we replace the residual adapter with the non-exemplar dynamic expandable network (i.e. NDER), which is
similar with [10]. As shown in the top two rows of Table 7, due to the lack of old samples, it is difficult to perform effective
optimization with such large expanding parameters. Because of the feature inconsistency between the old and new model
in the channel dimension, feature distillation can not be added to maintain the features of old classes (i.e. w/o D). For this
purpose we add the response-based distillation to align the output of the old and new models. It can be seen in the table
that the result has improved but there is still a big gap with other methods. It can be seen that our DSR strategy has the
potential to help CIL methods get rid of the dependence on exemplars. Combined with methods such as regularization-based
or structure-based strategies could promote our approach to be better. We will analyze and upgrade our DSR strategy in the
future in more complex settings.
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(a) 5 phases on CIFAR-100 (b) 10 phases on CIFAR-100 (c) 20 phases on CIFAR-100

Figure 5. Classification accuracy on CIFAR-100 (B50), which contains the complete curves of the latest method from different settings
(i.e. 5, 10 and 20 phases). The red curve represents our method, and the black one represents ABD [11]. All the experiments for different
methods are performed in the same hardware and software environment.

CIFAR-100
Method 5 phases 10 phases 20 phases

NDER(w/o D) 25.58 16.70 10.65
NDER 29.08 21.13 13.10

Ours(w/o R) 65.11 64.21 60.87
Ours 65.87 65.12 61.60

Table 7. Further analysis of the DSR strategy. ‘w/o D’ represents the meaning of without distillation and ‘w/o R’ represents the meaning
of without reparameterization.

B.3 Generalization to the CIL

To prove the effectiveness and extensibility of our method, we introduce it into the CIL setting. As [2] is one of the SOTA
methods in CIL setting, we modify its implementation with our DSR strategy directly. As shown in Table 8, our method
achieves average improvement of 2 points in the normal setting. Even if distillation is removed, the reslut of our method is
still comparative with [2]. It can be seen that our method has great potential for CIL settings, which will serve as our future
work.

CIFAR-100 (B50)
Method 5 phases 10 phases
Podnet 64.88 63.05

Ours(w/o D) 63.88 61.62
Ours 66.65 64.99

Table 8. Comparisons of the average incremental accuracy (%) under the CIL setting.
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