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Overview
In this supplementary material, we provide the following

items for better understanding the paper:

1. Head-to-head comparison with L2LTR.

2. Performance on CVACT.

3. Limited FoV results on CVUSA.

4. Unknown orientation results on VIGOR.

5. Example of polar transform on VIGOR.

6. Example of Non-uniform Crop in CVUSA.

7. Qualitative results.

8. Implementation details.

1. Head-to-head Comparison with L2LTR
In Table 1, we provide a detailed head-to-head com-

parison between the proposed TransGeo and L2LTR [10],
which was published after the submission deadline. Trans-
Geo has clear superiority over L2LTR in terms of both per-
formance and computational efficiency. Our method is pure
transformer-based, L2LTR adopts vanilla ViT [1] on the top
of ResNet [2], resulting in a hybrid CNN+transformer ap-
proach. L2LTR [10] does not provide GFLOPs and GPU
memory consumption, but the authors claim that L2LTR
requires significantly more GPU memory and pre-training
data than CNN-base methods, i.e. SAFA (10.82G of GPU
memory). We try their code and verify that L2LTR has
much large GPU memory comsumption and GFLOPs than
our method. Since L2LTR does not conduct experiments on
VIGOR, we compare the performance (R@1) on CVUSA.
Although the performance of L2LTR can be improved to
94.05 with polar transform, the overall performance is still
lower than TransGeo. Note that the polar transform does
not work well when the two views are not spatially aligned
(as discussed in the ablation study of main paper), e.g.
VIGOR [11], while TransGeo generalizes well on such sce-
narios with clear advantages.

L2LTR [10] TransGeo (Ours)
Architecture CNN+Transformer Transformer
GFLOPs 44.06 11.32
GPU Memory 32.16G 9.85G
Pretrain ImageNet-21k ImageNet-1K
Best Accuracy 94.05 94.08

Table 1. Head-to-head comparison between TransGeo and L2LTR.

2. Performance on CVACT
As shown in Table 2, the proposed TransGeo achieves

state-of-the-art result on CVACT. Although CVACT and
CVUSA are both aligned scenarios, we observe that remov-
ing patches cause more performance drop on CVACT than
CVUSA. One possible explanation is that the satellite im-
ages of CVACT (zoom-level=20) have different resolution
from CVUSA (zoom-level=18), resulting in a smaller cov-
ering range for each image.

Method R@1 R@5 R@10 R@1%
CVM-Net [3] 20.15 45.00 56.87 87.57
Liu [5] 46.96 68.28 75.48 92.01
SAFA [7] 78.28 91.60 93.79 98.15
L2LTR [10] 83.14 93.84 95.51 98.40
†SAFA [7] 81.03 92.80 94.84 98.17
†Shi [8] 82.49 92.44 93.99 97.32
†Toker [9] 83.28 93.57 95.42 98.22
†L2LTR [10] 84.89 94.59 95.96 98.37
Ours 84.95 94.14 95.78 98.37

Table 2. Comparison with previous works in terms of R@k (%)
on CVACT-val. “†” indicates methods using polar transform.

3. Unknown Orientation Results on VIGOR
In Table 3, we show the performance of TransGeo and

VIGOR [11] with unknown orientation, by randomly shift
the panorama horizontally. TransGeo outperforms VIGOR
with a large margin, indicating that TransGeo’s superior-
ity does not rely on the orientation alignment between two
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Same-Area Cross-Area
R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

VIGOR [11] 19.10 42.13 - 95.12 1.41 4.52 - 44.60
TransGeo 47.69 79.77 86.36 99.29 5.54 14.22 19.63 66.93

Table 3. Performance of TransGeo and previous work [11] on VIGOR dataset with unknown orientation.

FoV = 180◦ FoV = 90◦

R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%
DSM [8] 48.53 68.47 75.63 93.02 16.19 31.44 39.85 71.13
TransGeo 58.22 81.33 87.66 98.13 30.12 54.18 63.96 89.18

Table 4. Performance of TransGeo and previous methods on CVUSA with limited FoV (Field of View) and unknown orientation.

(a) Street-view Query (b) Aerial-view Reference

(c) Polar Transform (d) Polar Transform w/ Alignment

Figure 1. Example of polar transform on VIGOR. Red star denotes the location of street query in the aerial image.

views.

4. Limited FoV results on CVUSA

In Table. 4, we show the performance of TransGeo and
DSM [8] on CVUSA with limited FoV (Field of View), by
randomly cropping the panorama with random shift. The
orientation is also unknown. TransGeo significantly outper-
forms DSM on FoV = 180◦ and FoV = 90◦, indicat-
ing that TransGeo’s superiority does not rely on the wide
FoV of panorama. The performance gap is more significant
when the FoV is smaller.

5. Polar Transform Example on VIGOR

In Fig. 1, we show an example of polar transform on
VIGOR to demonstrate why it fails in unaligned scenarios.
(a) and (b) are the original street-view and aerial-view im-
ages, and the red star in (b) indicates the location of the

street-view query. (c) is generated with the vanilla polar
transform using the center of aerial image. VIGOR assumes
that the street-view query does not lie at the center of aerial
image, and we use the red star (as shown in (b)) to denote
the actual location. (d) is generated by using the red star
location as the center (i.e. adjustment to the spatial align-
ment) for polar transform, denoted as ‘Polar Transform w/
Alignment’. The spatial offset of query can cause distor-
tion in (c), and even the aligned (d) does not have a good
geometric correspondence with the street-view query, due
to the strong occlusion. Polar transform assumes that ob-
jects far away from the query location has a large vertical
coordinates in the street-view image. However, this does
not well model the geometric relationship between the two
views when there are tall buildings close to the street-view
query location. Besides, the roof of the building and other
occluded objects occupy a large space in the transformed
images (c) and (d), but they are not visible in the street-



view, thus do not help the cross-view matching.

Satellite Image Attention Mask Selected Patches

Figure 2. Example of attention map and non-uniform crop on
CVUSA.

6. Example of Non-uniform Crop in CVUSA
In the main paper, we only show the example of non-

uniform crop on city scenarios (VIGOR). We show the
attention map and cropping selection for rural scenarios
(CVUSA) in Fig. 2. The attention map in rural area
looks more scattering/uniform than cities, but they still fo-
cus more on discriminative objects, e.g. road.

7. Qualitative Results
In Figs. 3 and 4, we include qualitative results of Trans-

Geo on the CVUSA and VIGOR datasets. We select four
queries for each dataset with the ground-truth image ranked
at 1, [2, 5], [6, 100] and > 100, representing both success
and failure cases for analysis. The ground-truth in retrieved
results is marked with red box. For the first row of Figs. 3
and 4, the ground-truth is retrieved as the first one, which
is very similar to the second one. This indicates the strong
discriminative ability of TransGeo. The other failure cases
in CVUSA are due to extreme lighting condition (too dark),
lack of recognizable objects (only road and grass) with hard
negative reference (the first retrieved one has very similar
color to the street-view query), and different capture sea-
sons (query was taken in winter with snow) of two views.
For VIGOR, the retrieval is more challenging because of
semi-positive samples [11], which cover the query image at
edge area. The second and third rows both retrieve semi-
positive samples as the first one. This is not considered
as correct top-1 prediction, but their GPS location is actu-
ally very close to the ground-truth, resulting in good perfor-
mance in meter-level evaluation. For the last row, the model
fails because only trees and roads are visible in the query.
They do not provide enough information to distinguish the
ground-truth from other aerial images with trees.

8. Implementation Details
We use ρ = 2.5 for ASAM [4]. The weight decay of

AdamW is set to 0.03, with default epsilon and other pa-
rameters in PyTorch [6]. The sampling strategy is the same
as [11], but we re-implement it with PyTorch. Details are
included in the code.
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Street-view Query Ground-truth Retrieved Reference Images

Figure 3. Qualitative results on CVUSA. Red box indicates ground-truth in retrieved results. The ground-truth is ranked at 1, 2, 6, 148 for
four queries respectively.

Street-view Query Ground-truth Retrieved Reference Images

Figure 4. Qualitative results on VIGOR. Red box indicates ground-truth in retrieved results. The ground-truth is ranked at 1, 2, 9, 165 for
four queries respectively.


	. Head-to-head Comparison with L2LTR
	. Performance on CVACT
	. Unknown Orientation Results on VIGOR
	. Limited FoV results on CVUSA
	. Polar Transform Example on VIGOR
	. Example of Non-uniform Crop in CVUSA
	. Qualitative Results
	. Implementation Details

