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A. Proof of Eq. (8)
For simplicity to prove Eq. (8), we will not consider

residuals and cascaded estimation. Therefore, overall com-

pression pipeline will become: x
ga−→ y

Q−→ y = ỹ
gx−→

x̃, where x, x̃ are in two set X, X̃ with unknown distri-

butions. According to rate-distortion theory, minimizing

d (x, x̃) is equivalent to maximizing mutual information be-

tween X and Y:

max I (X; Y). (1)

Since we do not add constraints on other network parame-

ters, if network is fully trained, I (X;Y ) should be maxi-

mized. Therefore Eq. (1) can be derived as:

max I (Y ; Y). (2)

Thus maximize the mutual information between latents and

quantizeds. To solve Y or equivalence y, Eq. (2) is wrote

as a function w.r.t. y:

f (y) =

∫
y

∑
y

p (y,y) log
p (y,y)

p (y) p (y)
dy. (3)

Noticed that p (y) is under Categorical prior whose all

entries have the same probability i.e. pY (y = Ci) =
1/K, 1 ≤ i ≤ K [8]. Eq. (3) can be simplified as:

f (y) =

∫
y

∑
y

p (y) p (y) log
p (y | y)
p (y)

dy

= const ·
∫
y

p (y) log p (y | y)dy.
(4)

Since p (y) is not an variable of f (y), and log (·) is mono-

tonically increasing, maximizing Eq. (4) is equivalent to

maximizing right part of function:

max f (y) ⇔ max log p (y | y). (5)

*Corresponding author.

Methods

Latency (ms)

Encoder Decoder

Abs Rel Abs Rel

Ballé’18 30.66 1.09× 35.54 1.21×

Minnen’18

w/o 32.89 1.17× 36.24 1.24×
→ 2656.66 94.58× 1799.47 61.36×

59.13 2.11× 40.40 1.38×
Cheng’20

→ 2697.58 96.04× 1835.80 62.60×
94.11 3.35× 88.04 3.00×

Ours 28.09 1.00× 29.32 1.00×
Our Additional 12.03 0.43× 13.37 0.46×

Table 1. Encoding and decoding latency comparisons for image

size 768 × 512. Our additional model achieves even faster speed

than our main model.

This means when y is given to produce y, that specific prob-

ability should be one i.e. fully confident. Recall that

pY|Y (y | y; C) =

K∏
k=1

ζ(φ)
�{y=Ck}
k ,

where φk = −‖y −Ck‖22 , 1 ≤ k ≤ K.

(6)

So,

pY|Y (y = Ck | y) ∝ −‖y −Ck‖22 ,
pY|Y (y = Ck | y) = 1 ⇔ ‖y −Ck‖22 = 0.

(7)

Therefore, if y has a nearest codeword Ck, then φk should

be zero in order to pick Ck with maximized confidence.

So, for a subset Y k = {y ∈ Y | Φk = 1}, all ys in this

subset “pull” codeword Ck to be close to them, making Ck

to be the mean embedding of Y k. So Eq. (8) is derived.

B. Model Architecture
Now, we show our detailed model design in Fig. 1. We

adopt similar structure from [3] i.e. Residual blocks and at-

tention blocks. You could check structures in their paper.
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Figure 1. The detailed framework. “Residual”, “Attention” are residual block and attention block from [3]. “Down” and “Up” blocks are

placed on the right. “N” is number of channels. “↓” means output is 2× down-sampled and vice-versa. “M”, “K” are codebook sizes (M
sub-codebooks, K codewords for each.).
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Figure 2. An additional model with Conv5 and Deonv5 layers. The structure is similar as Ballé’s [2] and Minnen’s [5] in order to test

generalization ability of our method. Specifically, Conv5 uses kernel size = 5 × 5, stride = 2, padding = 2, and output size is 2×
smaller than input. Deconv5 is reverse of Conv5 .

Variants

M 1 2 4 6 8 12 16 24
K 64 128 256 512 1024 2048 4096 8192

Table 2. Models with different codebook sizes. We test codebooks

from small to large to validate scalability.

“Down” and “Up” blocks are placed on the right. “↓” means

output is 2× down-sampled and vice-versa. N the number

of channels, M , K the codebook sizes (M sub-codebooks,

K codewords for each.).

For instance, given an image of size 768 × 512, we first

16× down-sample it to 96×64, then go to cascaded estima-

tion. Each y is obtained by one more down-sampling. So,

size of y1 is 48× 32, y2 is 24× 16, etc., and vice versa for

decoding.

How to Calculate sup bpp? As shown above, output code

size will be 162×, 322×, 642× smaller than original im-

ages. According to Sec.4, the upper bound of bpp is:

M ·
∑

l log2 K · h� · w�

H ·W . (8)

For example, when we employ model №1, where M = 2
and K = [8192, 2048, 512], the above result is:

2 ·
(

13

162
+

11

322
+

9

642

)
≈ 0.1274 (9)
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1 class Quantizer(Module):
2 """
3 Quantizer with `m` sub-codebooks,
4 `k` codewords for each, and
5 `n` total channels.
6 Args:
7 m (int): Number of sub-codebooks.
8 k (int): Number of codewords for each sub-codebook.
9 n (int): Number of channels of latent variables.

10 """
11 def __init__(self, m: int, k: int, n: int):
12 super().__init__()
13 # A codebook, feature dim `d = n // m`.
14 self._codebook = Parameter(torch.empty(m, k, n // m))
15 self._initParameters()
16

17 def forward(self, x: Tensor, t: float = 1.0) -> (Tensor, Tensor):
18 """
19 Module forward.
20 Args:
21 x (Tensor): Latent variable with shape [b, n, h, w].
22 t (float, 1.0): Temperature for Gumbel softmax.
23 Return:
24 Tensor: Quantized latent with shape [b, n, h, w].
25 Tensor: Binary codes with shape [b, m, h, w].
26 """
27 b, _, h, w = x.shape
28 # [b, m, d, h, w]
29 x = x.reshape(b, len(self._codebook), -1, h, w)
30 # [b, m, 1, h, w], square of x
31 x2 = (x ** 2).sum(2, keepdim=True)
32 # [m, k, 1, 1], square of codebook
33 c2 = (self._codebook ** 2).sum(-1, keepdim=True)[..., None]
34 # [b, m, d, h, w] * [m, k, d] -sum-> [b, m, k, h, w]
35 # dot product between x and codebook
36 inter = torch.einsum("bmdhw,mkd->bmkhw", x, self._codebook)
37 # [b, m, k, h, w], pairwise L2-distance
38 distance = x2 + c2 - 2 * inter
39 # [b, m, k, h, w], distance as logits to sample
40 sample = F.gumbel_softmax(-distance, t, hard=True, dim=2)
41 # [b, m, d, h, w], use sample to find codewords
42 quantized = torch.einsum("bmkhw,mkd->bmdhw", sample, self._codebook)
43 # back to [b, n, h, w]
44 quantized = quantized.reshape(b, -1, h, w)
45 # [b, n, h, w], [b, m, h, w], quantizeds and binaries
46 return quantized, sample.argmax(2)

Figure 3. Minimal implementation of our probabilistic vector quantization.

C. Implementation

To implement a probabilistic vector quantization

with multi-codebooks, we could seek help from a

few PyTorch built-in functions such as einsum and

gumbel softmax. Our implementation is shown in

Fig. 3. Specifically, to calculate the pair-wise Euclidean

distance in order to produce φ, we can use the expanded

version for speed up, e.g., for two matrix U ⊆ R
k1×n,V ⊆

R
k2×n, the pairwise distance D ⊆ R

k1×k2 is calculated by:

U2 + V 2 − 2UV ᵀ. We could utilize einsum to perform

above calculation in M ways separately with very few line

of codes (line № 31 ∼ 38). Then, the calculated distance

will be input of gumbel softmax to sample one-hot vec-

tors (line № 40). The indices of where “one”s present are

collected as b (line № 46).

D. Additional Experiments
We also conduct a few additional experiments to investi-

gate detailed latencies, model generalization ability, etc.

D.1. Compression Latencies w.r.t. Codebook Size

We conduct latency tests of our models by varying M,K
in codebook, to see if codebook size could affect model ef-

ficiency. Specifically, we set N = 192, L = 1, M varies
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Figure 4. Rate-Distortion performance with our additional conv5 -based model on Kodak dataset. Ours is slightly better than Ballé’18 and

Minnen’18, which have similar backbone.
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Figure 5. Latencies w.r.t. codebook sizes. Some bumps in decoder

is considered to be within margin of error.
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Figure 6. Left: Residual-based masked convolutional block. We

use MaskedConv with kernel size 5 × 5. The last layer pro-

duces M ×K logits and trained by picked codeword indices and

cross-entropy loss. Right: Demonstration of masked prediction. It

uses left and top y as context information to predict index of next

picked codeword.

from 1 to 24 and K varies from 64 to 8192. Detailed set-

tings are placed in Tab. 2 while results are placed in Fig. 5.

From Fig. 5, we could draw following conclusions.

Firstly, encoder’s latency is linearly correlated to K. This is

because computation of φ consumes O (NKD) time com-

Codecs BPP ΔE LPIPS IS

VVC VTM 14.2 0.1455 3.927 0.159 3.593
Cheng’20 (MSE) 0.1281 4.577 0.161 3.542
Cheng’20 (MS-SSIM) 0.1279 4.782 0.149 3.791
Ours (MSE) 0.1234 4.505 0.163 3.535
Ours (MS-SSIM) 0.1256 4.966 0.144 3.875

Table 3. Perceptual comparisons between VVC, Cheng’20 and

ours on Kodak dataset. The results indicate that deep models tar-

geting MS-SSIM generally perform better than MSE on LPIPS

and IS. And in contrast, MSE models as well as VVC perform

better on ΔE.

plexity.

Decoder’s latency is smooth and flat. Since it is not af-

fected by K or M . Decoding only involves O (1) lookup

and operations between sub-codebooks are highly paral-

leled. Therefore, no matter how many codewords are em-

ployed in quantization, decoding can be still treated as

O (1) roughly.

D.2. Additional Perceptual Evaluations

To make a comprehensive study on image restoration

quality of out network as well as other codecs, we notice

that there are a lot of perceptual metrics can be adopted.

In this study, we choose ΔE [1], LPIPS [9] and Inception

score (IS) [6]1. We pick “VVC”, “Cheng’20” and “ours” to

test since they have similar performance in main paper. Due

to limitation of computation resources, we only test with our

model №2 and tune quantization parameter of other codecs

to target similar bpp. Results are shown in Tab. 3. From

this table, we could confirm codecs that target MSE gener-

ally perform worse than MS-SSIM on LPIPS and IS scores.

In contrast, MSE models have lower ΔE than MS-SSIM

models.

1We use their open-source PyTorch implementations.
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Context Acc. bpp w/ bpp w/o

2.24% 0.1262 0.1265

Table 4. Prediction accuracy of the auxiliary context model. With

context model, we only obtain 2.24% accuracy for context predic-

tion on the average among all levels and all groups, and bpp is

nearly the same with original model.

D.3. R-D Performance with Other Backbones

In main paper, we only report R-D performance based on

[3]’s backbone. It is important to test with other backbones

to evaluate the generalization ability of our method. There-

fore, we design an additional model, as shown in Fig. 2.

Specifically, we use Conv5 and Deconv5 with 5 × 5 ker-

nels to perform 2× down-sampling and up-sampling.

Results on Kodak dataset are placed in Fig. 4. We only

compare our additional model with methods that have sim-

ilar backbone i.e. Ballé’18 [2] and Minnen’18 [5]. Similar

as results in main paper, our method has a slightly better

R-D performance against Ballé’18 and Minnen’18. These

results indicate our method is suitable for different back-

bones. It is foreseeable that our method would be effective

if incorporates with other backbones e.g. [4].

We also test latencies with this additional model, placed

in Tab. 1 at the last row. From the table we find that la-

tencies of the additional model are further reduced. This

is because our additional model has fewer layers than main

model. Compared to Ballé’18 and Minnen’18, our model

is much faster. We will release two types of models in the

future.

D.4. Incorporating with Auxiliary Context Model

In main paper, we claim that our model does not need

auxiliary context models for side information prediction.

But we still want to know whether context models could

help for better Rate-Distortion performance. To incorpo-

rate with a context model, we adopt the widely-used Pixel-

CNN [7]. Specifically, we build a residual-like block with

full of MaskedConv layers (Fig. 6) as the causal prediction

network. We insert these blocks directly after y� on every

level. Then, they produce M × K logits and are trained

with picked codeword indices and cross-entropy loss. This

procedure is also demonstrated in Fig. 6.

To evaluate how well these introduced networks predict,

prediction accuracy of next picked codeword is calculated.

For instance, if they could predict 50% of picked code-

words’ indices, bpp will be reduced 50% approximately.

Results are reported in Tab. 4. With context model, we

only obtain 2.24% accuracy for context prediction on the

average among all levels and all groups, and bpp is nearly

the same with original model. This indicates that our model

has encoded binary codes with high information entropy.

(a) Perturbed area. 15% codes are

changed to random new values.

(b) Visualization result after pertur-

bation. BPP: 0.1278 → 0.1283.

Figure 7. Effects of code perturbation.

Introducing extra context model do not further reduce rate.

D.5. Effects of Code Perturbation

As mentioned in limitations and broader impacts, we

could craft images that corrupt vectorized prior by e.g. ad-

versarial attack. Therefore, a simple study is conducted by

perturbing partial of compression codes to simulate this ap-

proach.

Specifically, We randomly perturb 15% of b that pro-

duced by our MS-SSIM model №1. Result based on Fig.7

is shown in Fig. 7. In Fig. 7(a), lighter area indicates more

codes are perturbed. Fig. 7(b) is reconstruction result that

appears to be artifacts on it. For whole Kodak dataset, after

perturbation, bpp increases 0.1256→0.1267 and MS-SSIM

decreases 14.33→8.83.

From above observations, firstly we think these reveal

model’s ability to choose appropriate codes for good rate-

distortion. If any codes are misplaced, not only perfor-

mance will drop, but also rate will increase. And intuitively,

if perturbation rate increases, model performance will con-

tinuously drop. This can be confirmed by following experi-

ments in Fig. 8. We think this is a valuable research problem

and would like to conduct future studies on robustness and

mechanisms of proposed vectorized prior.

D.6. Visualization

We further pick 2 images in Kodak and 3 images in CLIC

Professional valid set for comprehensive visualization in

Figs. 9 to 13. From these figures we could find our model

preserves rich details.
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(a) Clean image. BPP: 0.1280 (b) 25% perturbed. BPP: 0.1285 (c) 50% perturbed. BPP: 0.1288 (d) 75% perturbed. BPP: 0.1294

Figure 8. Restored images with various perturbation proportions.

Original “kodim01.png” Ours (MSE), bpp: 0.1257

PSNR: 29.32dB, MS-SSIM:12.78dB

Ours (MS-SSIM), bpp: 0.1269

PSNR: 27.01dB, MS-SSIM:14.74dB

JPEG-2000, bpp: 0.1334

PSNR: 23.16dB, MS-SSIM:7.77dB

BPG, bpp: 0.1360

PSNR: 24.79dB, MS-SSIM:9.57dB

VVC, bpp: 0.1332

PSNR: 25.40dB, MS-SSIM:10.13dB

Figure 9. Comparisons of “kodim01.png” with other codecs.

Original “kodim07.png” Ours (MSE), bpp: 0.1232

PSNR: 30.72dB, MS-SSIM:15.56dB

Ours (MS-SSIM), bpp: 0.1251

PSNR: 28.39dB, MS-SSIM:15.25dB

VVC, bpp: 0.1376

PSNR: 25.93dB, MS-SSIM:10.12dB

BPG, bpp: 0.1422

PSNR: 25.42dB, MS-SSIM:9.76dB

JPEG-2000, bpp: 0.1319

PSNR: 23.61dB, MS-SSIM:7.77dB

Figure 10. Comparisons of “kodim07.png” with other codecs.
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Figure 11. Ours bpp = 0.1236, PSNR = 34.29dB, MS-SSIM = 19.40dB.

Figure 12. Ours bpp = 0.1265, PSNR = 26.95dB, MS-SSIM = 11.64dB.

Figure 13. Ours bpp = 0.1259, PSNR = 27.04dB, MS-SSIM = 13.51dB.
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