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1. Supplementary of Method
1.1. Key symbols List

Here we give the pivotal symbols list in Table. 1. In
general, we use italic bold uppercase characters to denote
the matrices. Vectors are denoted with lowercase. Sets are
noted by blackboard bold, for example X.

Table 1. The Meaning of Some Pivotal Symbols
X ∈ R3×N RGB feature of the input image.
Z ∈ RC×N The pixel-level feature of X
z ∈ RC×1 Image-level feature of X .
Y ∈ RK×N The pixel-level ground truth mask.
y ∈ RK×1 The image-level ground truth mask.

Y ∗ ∈ RK×N The predict localization score.
y∗ ∈ RK×1 The predict classification score.
s ∈ RC×1 Feature of sample in source domain.
t ∈ RC×1 Feature of sample in target domain.

M ∈ RK+1×C Cache matrix of the proposed TSA.
r ∈ RK+1×1 Matrix that contains update ratio.
at ∈ RC×1 Anchor of real target domain.
au ∈ RC×1 Anchor of Universum target domain.
Cinit ∈ R3×1 Initial cluster center of K-Means.
C ∈ R3×1 Cluster center outputted by K-Means.
X : {X} Training image set.
S : {s} Source domain/set.
T : {t} Target domain/set.

Ys : {ys = y} Label set for source domain.
Yt : {yt = Y:,i} Label set for target domain.

Tf : {tf} Fake Target domain/set.
Tt : {tt} Real Target domain/set.
Tu : {tu} Universum Target domain/set.

N The number of pixels (height*width).
C The number of channel for feature.
K The number of object class.
M The number of images in training set.
yc The cluster label outputted by K-Means.

f(·) : R3×N → RC×N The feature extractor.
g(·) : R?×N → R?×1 The feature aggregator.
e(·) : RC×? → RK×? The score estimator.

L(S,Ys,T) The entire loss function.
Lc(S,Ys) The classification loss.

Ld(S ∪ Tf ,Tt) The domain adaption loss of DAL.
Lu(Tu) The Universum regularization of DAL.

1.2. Equivalency between CAM and MIL

Most WSOL method follows the CAM that utilizes the
classification structure for object localization. Here we
show that the mechanism of the CAM-based methods is
equal to the classification under MIL manner.

Proof. In CAM-based methods, the pixel-level feature map
Z ∈ RC×N is fed into the GAP-based aggregator to gener-
ate the image feature z ∈ RC×1. Then the estimator with
learning weight W ∈ RK×C is operated on z to gener-
ate the image-level classification scores. Assuming that the
classification score is y∗ ∈ RK×1 and localization score is
Y ∗ ∈ RK×N , the workflow of CAM can be reformulated
as:

y∗ = W ∗ z =

C∑
c

W:,czc =
1

N

C∑
c

W:,c ∗ (
N∑
n

Zc,n))

=
1

N

C∑
c

N∑
n

W:,c ∗Zc,n =
1

N

N∑
n

(

C∑
c

W:,c ∗Zc,n)

=
1

N

N∑
n

(W ∗Z:,n) =
1

N

N∑
n

Y∗:,n

(1)

Eq. 1 shows that CAM is equal to firstly generating the
classification score of the instance (pixel/patch) Y∗:,n, and
then determining the classification score of the bag (im-
age) y∗ based on the mean of Y∗:,n. Thus, it is the same
as doing image classification under the MIL manner, where
pixel/patches are the instance and images are the bag.

1.3. Feature-based Universum Regularization

The Universum regularization proposed by Jason [10] di-
rectly adopt l1 regularization on the classification score of
Universum samples to promote the learned classifier. Here
we prove that minimizing our proposed Lu(Tu) is equal to
minimizing the upper bound of it.

Proof. By defining the weight matrix of the estima-
tor/classifier as W ∈ RK×C , we can reformulate the origi-
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nal classification-based Universum regularization:

Lc
u =

∑
tu∈Tu

|W ∗ tu|

=
∑

tu∈Tu

K∑
k

|Wk,: ∗ tu|

=
∑

tu∈Tu

K∑
k

|
C∑
c

(Wk,c ∗ tuc )|

≤
∑

tu∈Tu

K∑
k

|
C∑
c

(Wk,c)
2 + (tuc )

2

2
|

=
1

2

K∑
k

C∑
c

(Wk,c)
2 +

1

2

∑
tu∈Tu

C∑
c

(tuc )
2

(2)

It can be seen that the first term, i.e. 1
2

∑K
k

∑C
c (Wk,c)

2,
regulars the weights of classifier, which is uncorrelated with
the Universum set Tu. Thus, we can minimize the upper
bound of Lc

u directly by minimizing the second term of
Eq. 2, which takes the same effect of the Lu(Tu) defined
in our paper.

1.4. Structure for DA-WSOL with DANN

Except for the MMD [4] that does not require any ad-
ditional module for domain adaption, our paper also en-
gages the adversarial training based DANN [3] as the UDA
method of our proposed DA-WSOL pipeline. The corre-
sponding structure is shown in Fig. 1.

Figure 1. The structure of DA-WSOL with adopting DANN.

In detail, a domain classifier (implemented by fully-
connected layer) is added to generate the domain label yd

of the feature, i.e. discerning whether the sample belongs
to the source domain (yd = 0) or target domain (yd = 1).
Thus, the domain adaption loss Ld of our DA-WSOL can
be implemented as:

Ld(S ∪ Tf ,Tt) = Lbce(S ∪ Tf ,0) + Lbce(Tt,1) (3)

Moreover, a gradient reversal layer (GRL) [3] is also
added right before the domain classifier. It reverses the
backward effect of the domain classifier when calculating
the gradient of parameters that are upstream the GRL (pa-
rameters of feature estimator and feature aggregator). With

the help of GRL, the parameters of the domain classifier are
updated to minimize Ld, while the parameters of the fea-
ture extractor and aggregator are updated to maximize Ld,
i.e. learning domain-invariable features.

2. Additional Experiments
2.1. Interpretability of the target sampling strategy

We verify the interpretability of our proposed target sam-
pling strategy, which selects the representative samples for
different types of the target domain. Fig. 2 visualizes the
sampling results of the three target sets. It shows the fake
target set Tf tends to catch the target samples (pixels) that
generally exist in most images, such as head/wing of the
cock, head of the lion, screen of the cell phone. This makes
their features more discriminative and causes their high im-
portance when aggregating the source feature by g(·). Thus,
the features of these target samples are more similar to the
source features and can be used to supply the insufficient
samples of the source domain. While, the real target Tt

tends to catch target samples that are less discriminative
than the samples of Tf . These target samples can be seen
as the hard samples that have large feature discrepancy with
the source domain. Aligning the feature distribution be-
tween these hard samples and source samples can efficiently
enhance the estimator to identify these less discriminating
object locations. Moreover, the Universum target set Tu

also effectively catches the Universum sample, i.e. back-
ground locations, whose label is unseen in the source do-
main (because the background does not belong to the class
of any object). Thus, Tu helps to purify the background
locations from Tt and Tr. These three subsets help to bet-
ter solve the domain adaption in the WSOL scenario and
contribute to the high performance of our DA-WSOL.
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Figure 2. The visualization of the assigning results, where masks
are collected based on the cluster label yc = 0, 1, 2 respectively
for Tu, Tt, Tr as indicated in Eq.(6) of our paper.
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2.2. Influence of the number of selecting samples

Considering the number of selecting samples of three tar-
get subsets are determined by the hyper-parameter n, here
we test the influence of this hyper-parameter for the local-
ization performance. Fig. 3 shows selecting different num-
ber samples for three subsets. It can be seen that setting
n = 32 is the most effective setting, because if n is too
small, the lack number of samples cannot effectively esti-
mate the target distribution. While, if n is too large, many
miss-assigned samples will be contained when estimating
the target distribution, because samples are selected based
on the clustering label generated by the TSA module. Thus,
the performance will be weaken.

Figure 3. The PxAP using different sample number n.

2.3. Influence of background threshold

Similar to other WSOL methods, the performance of our
DA-WSOL pipeline is also influenced by the background
threshold. Thus, except for the threshold-concerned bench-
mark MaxBoxAcc and PxAP [1], we also plot the IoU un-
der different thresholds, and the precision-recall (PR) curve
in Fig. 4. It can be seen that our method has a much higher
peak on IoU score, and our PR-curve is located at the upper-
right compared with other methods. This shows that our
method can better balance the precision and recall when
using different background thresholds, which caused our
much higher PxAP as indicated in our main paper.

Figure 4. The IoU and PR curve plotted by different threshold.

2.4. Results with InceptionV3 backbone

Due to the page limitation, in our main paper, we only
give the comparison with SOTA methods with InceptionV3
backbone on OpenImages dataset. Here, we shows our re-
sults on ImageNet and CUB-200 dataset with InceptionV3
backbone. Specifically, SGD optimizer with weight decay
5e-4 and momentum 0.9 is used. For the ImageNet dataset,
the initial learning rate 0.001 is adopted to train our method
total 10 epochs, which is then divided 10 times every 3
epochs. Hyper-parameter λ1 and λ2 are set 0.1 and 0.3,
respectively. For the CUB-200 dataset, the initial learn-
ing rate are set 0.02, which is divided 10 times every 15
epochs. The training process is ended at 50 epoch and the
two hyper-parameters are set as λ1 = 1.4 and λ2 = 4. Cor-
responding results are shown in Table. 2. It can be seen
that the results are in accord with the ResNet50 in our paper
that our method outperforms SOTA methods in localization
score for the ImageNet dataset, while the Top-1 score is a
bit lower due to the side-affect of DA. Moreover, for the
CUB-200 dataset, our method outperforms the methods that
generate class-awareness localization maps (method with-
out underline), which is the same as ours.

Table 2. Comparison between our method and SOTA methods on
ImageNet and CUB-200 datasets with InceptionV3 backbone.

ImageNet dataset CUB-200 dataset
Method Top-1 Loc GT-known Top-1 Loc GT-known

CAM [14] 46.29 - 43.67 -
ADL [2] 48.71 - 53.05 -
DGL [9] 52.23 68.08 50.50 67.64
I2C [12] 53.11 68.50 55.99 72.60

ICLCA [5] 49.30 65.21 56.10 67.93
UPSP [8] 52.73 68.33 53.58 -

PSOL [11] 54.82 65.21 65.51 -
SEM [13] 53.04 69.04 - -
FAM [7] 55.24 68.82 70.76 87.25

GCNet [6] 49.06 - - -
Ours 52.70 69.11 65.95 80.03

∗ Scores in bold style indicate the best.
∗ Methods with underline generate class-agnostic map.

2.5. Balance between localization and classification

As discussed in our limitation, adopting DA takes the
side-effect on the accuracy of the source domain, which
weakens the classification-related metric. Thus, here we ex-
plore the balance between localization (target domain) and
classification (source domain) by setting different strengths
of λ1 for our DAL loss. Experiments are conducted on the
fine-grained CUB-200 dataset, which is more challenged in
the classification task on the source domain. Correspond-
ing results are shown in Fig. 5. It shows that when fo-
cusing more on minimizing the distribution between source
and target domain (higher λ1), the classification accuracy

3
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(source accuracy) will keep dropping and the localization
accuracy (target domain) firstly increases and then drops.
This is because much higher λ1 will reduce the influence
of the classification loss Lc, which weakens the strength of
the source-learned estimator. Thus, both accuracy on source
and target domain are weakened.

Figure 5. The classification and localization performance of our
DA-WSOL plotted by using different λ1.
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