
Appendix: Self-Supervised Learning of Object Parts for Semantic Segmentation

Adrian Ziegler
Technical University of Munich

adrian.ziegler@tum.de

Yuki M. Asano
QUVA Lab

University of Amsterdam
y.m.asano@uva.nl

A. Appendix

A.1. Implementation details

Model training Our model is implemented in Torch [13]
and PyTorch Lightning [6]. We use faiss [11] for K-Means
clustering and the MapEquation software package [3] for
community detection.

We chose to train a ViT-Small as the amount of parame-
ters is roughly equivalent to a ResNet-50’s (21M vs. 23M).
Further, we use a student-teacher setup and the teacher
weights are updated by the exponential moving average of
the student weights following [2, 7]. The exponential mov-

Figure 1. Bounding box generation example for cluster as-
signment alginment. The left column shows the global crops,
the right column the local crops. Each global crop has N − 1
bounding boxes as it produces prediction targets for all remain-
ing N − 1 crops. Each local crop has Ngc, the number of global
crops, bounding boxes as it is used to predict the prediction targets
of each global crop.

ing average for updating the teacher weights is adapted with
a cosine schedule starting at 0.9995 and going up to 1 i.e.
a hard copy. We train the ViT-Small with a cosine learn-
ing rate schedule going down to 0 over 50 training epochs.
The initial projection head learning rate is 1e−4 and the
backbone’s learning rate is 1e−5. The projection head con-
sists out of three linear layers with hidden dimenstionality
of 2048 and Gaussian error linear units as activation func-
tion [9]. The output dimensionality is 256 and the resulting
tensors are then passed through a l2-bottleneck and the pro-
totype matrix C to produce cluster assignment predictions.
As discussed, we use a queue for sinkhorn-knopp clustering
with a length of 8192. We set the temperature to 0.1 and use
Adam as an optimizer with a cosine weight decay schedule.
The alignment happens to a fixed output size of 7x7 during
training. This makes sure that the local and global crop fea-
ture maps have the same spatial resolution. The augmenta-
tions used are random color jitter, Gaussian blur, grayscale
and multi-crop augmentations. The global crop’s resolution
is 224x224 and the local crop’s resolution is 96x96. We
generate global and local crops with the constrain that they
intersect at least by 1% of the original image size to make
sure that there is a non-negligible intersection where we can
apply our clustering loss to. In Figure 1 we show the gener-
ation process for two ImageNet pictures.

Fully unsupervised semantic segmentation For CBFE
and CD we take PVOC12 train to find good hyperparam-
eter configurations i.e. clustering granularities K, the pre-
cision threshold for CBFE as well as Markov time and the
co-occurrence probability threshold for CD. We use a seg-
mentation of our embedding space to 200 clusters as we
found this granularity to work best on PVOC for CBFE.
Before doing foreground-focused clustering using the clus-
ter mask, we bilinearly interpolate the embeddings to the
desired mask size. For CBFE we report the precision thresh-
olds used in Table 1. To evaluate the unsupervised saliency
estimator baseline method, we use the saliency head pro-
vided by the MaskContrast authors [14]. For the compu-
tation of the Jaccard distance we assign unlabelled objects
to foreground. These objects have a separate class in the

1



PVOC dataset.
We cluster the embedding space to 100 clusters as we

found this granularity to work best on PVOC for CD. To
construct the co-occurrence network, we calculate the con-
ditional co-occurrence probability on each image and then
average over all images the cluster appeared. The MapE-
quation software package can be instructed to constrain the
number of found communities. We use this setting to find
exactly as many communities as there are object categories
in the given dataset (for PVOC it is 20). All clusters that
are not in communities are assigned to background, which
are just 4 out of 100 for our network, as we already focus
clustering on foreground. We set the co-occurrence prob-
ability threshold to 5%. All edges below this threshold are
ignored by Infomap. Further as stopping criterion we set the
Markov time to 1.5. The other parameters are left at default
value. We report results averaged over 5 seeds.

Evaluation details Since we evaluate the pre-GAP layer4
features or the spatial tokens, their output resolution does
not match the mask resolution. To fix that, we do bilinear in-
terpolation before applying the linear or FCN head or inter-
polate the clustering results by nearest neighbor. For a fair
comparison between ResNets and ViTs, we use dilated con-
volution in the last bottleneck layer of the ResNet such that
the spatial resolution of both network architectures match
(28x28 for 448x448 input images). All overclustering re-
sults were computed using downsampled 100x100 masks
to speed up the Hungarian matching as we found that the
results do not differ from using full resolution masks.

We fine-tune the linear head for 25 epochs with a learn-
ing rate drop after 20 epochs and a batch size of 120. For
most checkpoints we found a learning rate of 0.01 to work
well except for MaskContrast [14] and MoCo-v2 [8] where
we use a learning rate of 0.1. All heads were trained on
downsampled 100x100 masks to increase training speed.
For evaluation, we stick to 448x448 masks as it does not
require Hungarian matching and is thus fast.

The FCN head is fine-tuned for 30 epochs equaling the
20k iterations used in [15]. Again we use a learning rate of
0.01 with a drop to 0.001 after 15 epochs and a batch size of
64. The design of our fully convolutional head follows [15]:
We use two convolutional layers with ReLU non-linearites.
Frozen features and convolved head features are then con-
catenated and sent through another convolutional layer. The
resulting feature maps ϕ are then transformed to the desired
output classes by a 1x1 convolution. During training we

Method Precision Threshold
Leopart IN 40%
Leopart IN+CC 30%

Table 1. Precision values used for classifying clusters as fore-
ground.

K=500
arch PVOC12 COCO-Thing COCO-Stuff
ViT-S/16 53.5 55.9 43.6
ViT-B/8 59.7 56.8 45.9

(a) Overclustering results on PVOC, COCO-Thing and COCO-Stuff. The results are
comparable to Tab. 3 in the paper.

ViT-S/16 ViT-B/8
DINO 4.6 5.3
+ Leopart 18.9 21.2
+ CBFE 36.2 40.4
+ CD 38.4 40.3

(b) Fully unsupervised semantic segmentation results on PVOC.

Method arch Jacc. (%)
Leopart IN CBFE ViT-S/16 58.6
Leopart CC CBFE ViT-S/16 58.2
Leopart CC CBFE ViT-B/8 63.0

(c) Foreground extraction results on PVOC. The results are comparable to Table 7 in
the paper.

Table 2. Comparison of ViT-S/16 and ViT-B/8 performances.
We further improve state-of-the-art on all experiments by training
a larger model with our loss and running CBFE and CD.

apply 2D-dropout on ϕ.

A.2. Additional Experiments

Fine-Tuning a larger backbone To push the boundaries
of state-of-the-art even further, we fine-tune a ViT-Base
with patch size 8 (ViT-B/8) for 100 epochs with Leopart.
We start again from a DINO initialization. The results are
reported in Tab. 6 in the paper and Tab. 2. Training a larger
backbone boosts transfer learning performance by up to 6%
on PVOC as shown in Tab. 2a. The gains on COCO-Thing
and COCO-Stuff are around 1% and 2% respectively.
For fully unsupervised semantic segmentation, training a
larger backbone even shows more relative gain than training
a ViT-Small. This is apparent from the 35% relative gain
for a ViT-B/8 and the 33.8% relative gain for a ViT-S/16
over their respective DINO intializations, as can be deduced
from Tab. 2b. Overall, we are able to improve state-of-the-
art by additional 2% just by taking a larger model. Inter-
estingly, CD cannot improve over CBFE indicating that the
choice of hyperparameters for community detection might
not be optimal. We leave this to future work.
A larger model also improves foreground extraction using
our CBFE method by more than 4% as shown in Tab. 2c.

Leopart with different initializations To show the gen-
erality and robustness of our approach, we fine-tune with
Leopart starting from a Moco-v3, MAE and supervised ini-
tialization. The results are shown in Table 3. Leopart is
good at fine-tuning even more recent SSL methods and
larger pretrained backbones like MAE (where our method
adds +28% in K=500 performance). Our method is even



Figure 2. More cluster masks for PVOC12 val obtained by our CBFE method. Overall, the masks capture the object shape well but at
times they include too much background. Also small objects are not detected at times as can be seen in the first picture from the right in
the first row, which is a limitation discussed.

At init. After Leopart
Init Arch LC K=500 LC K=500
Superv. ViT-S/16 68.1 55.1 72.5 61.6
MoCo-v3 [5] ViT-S/16 13.4 5.8 42.0 31.2
MAE [4] ViT-B/16 47.5 10.0 68.9 38.4

Table 3. Transfer learning results starting from various ini-
tializations. Leopart consistently improves upon the initialization
(init.) and thus shows the generality of our method. Comparable
to Tab. 3 in the paper.

able to boost the performance of a ViT pretrained with su-
pervision showing the wide applicability of our dense loss.

DenseCL with DINO init For further comparison to our
closest comptetitor in transfer learning, DenseCL [15], we
trained a ViT with DINO initalization using their loss and
following the setting of Tab. 3 for PVOC12. We find a per-
formance of 54% and 17.1% for LC and K=500 evaluation
respectively, i.e. fine-tuning with Leopart still outperforms
by >15% for LC and >40% for K=500. These results in-
dicate that DenseCL (perhaps due to its global-pooled loss
term) does not seem apt for fine-tuning as it barely improves
the DINO init (+3.4% for LC and −0.3% for K=500).

Queue usage ablation. We show that the usage of a queue
improves our results as shown in Table 4, comparable to
the experiments of Table 1 in the main paper. This means
that enough diversity for equi-partitioned clustering can be
achieved with this simple mechanism.

Num. clusters
queue LC 100 300 500
✗ 67.2 35.0 45.7 48.1
✓ 67.8 38.2 47.2 50.7

Table 4. Queue Ablation. A clustering queue improves perfor-
mance.

Method ADE20k-Street
K=500 K=1000

Random ViT 1.5 2.0
Sup. ViT 5.4 7.2
DINO [2] 5.7 7.0
Leopart IN 6.9 9.3
Leopart CC 7.6 10.0

Table 5. Ade20k overclustering results. Evaluated on 111 parts
classes taken from ADE20k street scenes.

Predicting ADE20k parts To quantitatively support our
claim that we learn object parts, we run experiments on
Ade20K [16] street scenes that feature annotations for 111
different part classes and 1983 images. We pretrain on
COCO and report overclustering results given ground-truth
parts annotations. As shown in Table 5, Leopart improves
DINO’s parts mIoU by 1.9% and 3% with a clustering gran-
ularity of K = 500 and K = 1000 respectively. This shows
that our method increases object part correspondence. Inter-
estingly, our gain improves with higher clustering granular-



ity. Also, while the supervised ViT outperformed DINO in
transfer learning it is not superior when it comes to discov-
ering object parts.

A.3. Additional visualizations

We provide further cluster masks in Figure 2 and seg-
mentation map visualizations on PVOC12. Next to com-
munity detection results shown in Figure 4, we also show
unmerged foreground clustering results with K=100 in Fig-
ure 3 to give the reader an impression of the segmentation
granularities of each object. In Figure 5, we also show seg-
mentation maps obtained from classic overclustering results
by grouping clusters to objects using label information.

A.4. Datasets Details

A.4.1 PASCAL

For fine-tuning linear heads as well as the FCN head, we use
the trainaug split featuring 10582 images and their annota-
tions. We evaluate on PVOC12 val that has 1449 images.
During evaluation we ignore unlabelled objects as well and
the boundary class following [14]. For hyperparameter tun-
ing of our fully unsupervised segmentation method, we use
the PVOC12 train split with 1464 images.

A.5. COCO

We use the COCO benchmark in two ways to further iso-
late different object definitions. For instance, COCO-thing
has one class for vehicles whereas PVOC distinguishes be-
tween boats, busses and cars. Also, things have a funda-
mentally different object definition as stuff. First, we extract
stuff annotations i.e. object w/o a clear boundary, often in
the background. For that, we use the COCO-Stuff annota-
tions [1]. We further merge the 91 fine labels to 15 coarse
labels, as in [10]. We also assign the coarse label “other”
to non-stuff object as the label does not carry any semantic
meaning. The resulting labels are:

[’water’, ’structural’, ’ceiling’,
’sky’, ’building’, ’furniture-stuff’,
’solid’, ’wall’, ’raw-material’,
’plant’, ’textile’, ’floor’,
’food-stuff’, ’ground’, ’window’]

Non-Stuff objects are ignored during training and evalua-
tion.

Second, we extract foreground annotations by using the
panoptic labels provided by [12]. We merge the instance-
level annotations to an object category with a script the au-
thors provided. Further, we merge the 80 fine categories to
coarse categories obtaining 12 unique object classes:

[’electronic’, ’kitchen’, ’appliance’,
’sports’, ’vehicle’, ’animal’,

’food’, ’furniture’, ’person’,
’accessory’, ’indoor’, ’outdoor’]

The background class is ignored during training and evalu-
ation.

We fine-tune the linear and FCN head on a subset of 10%
of the data i.e. 11829 images. We evaluate on the full 5000
validation images.

A.5.1 ADE20k

Overall, ADE20k features 3687 different objects that can
act as parts. We constrain our evaluation to street scenes
that contain parts annotations. This reduces our data to 1983
images and to the following 111 object parts:

[’arcades’, ’arch’, ’arm’,
’back’, ’balcony’, ’balustrade’,
’bars’, ’base’, ’basket’,
’bell’, ’bicycle path’, ’blind’,
’blinds’, ’branch’, ’bumper’,
’chimney’, ’cloud’, ’clouds’,
’column’, ’columns’, ’cornice’,
’crosswalk’, ’dome’, ’door’,
’door frame’, ’doorbell’, ’dormer’,
’double door’, ’drain pipe’, ’eaves’,
’entrance’, ’entrance parking’,
’exhaust pipe’, ’face’, ’fence’,
’fender’, ’fire bell’, ’fire escape’,
’garage door’, ’garage doors’,
’gas cap’, ’gate’, ’grille’,
’ground’, ’gutter’, ’handle’, ’head’,
’headboard’, ’headlight’, ’hip tiles’,
’hood’, ’house number’, ’housing’,
’housing lamp’, ’lamp’,
’lamp housing’, ’lattice’, ’left arm’,
’left foot’, ’left hand’, ’left leg’,
’license plate’, ’logo’,
’metal shutter’, ’metal shutters’,
’mirror’, ’pipe’, ’pipe drain’,
’pole’, ’porch’, ’post’, ’railing’,
’rain pipe’, ’revolving door’,
’right arm’, ’right foot’,
’right hand’, ’right leg’, ’rim’,
’road’, ’roof’, ’roof rack’,
’rose window’, ’saddle’,
’shop window’, ’shutter’, ’shutters’,
’sidewalk’, ’sign’, ’skylight’,
’staircase’, ’steering wheel’,
’step’, ’steps’, ’taillight’,
’terrace’, ’torso’, ’tower’, ’tree’,
’trunk’, ’vent’, ’wall’, ’wheel’,
’window’, ’window scarf’, ’windows’,
’windshield’, ’wiper’, ’car’,
’buildings’, ’building’]



Figure 3. K=100 overclustering visualization without merging clusters to objects. Note that the cluster colors are not unique as we have
100 different clusters: Same cluster means same color but not the other way around. Interestingly, Leopart learns a different segmentation
granularity depending on the object category. For instance, cars and humans are segmented into various parts, but birds are usually kept
whole.

Figure 4. More fully unsupervised segmentation results obtained through our community detection method. Our method, manages
to merge the object parts clusters from Figure 3 to objects in most of the cases. However, as our method does a hard cluster to community
assignment, each cluster can only be used for one object. This limitation can be seen for the car wheel class in the 4th row and 5th and 6th
pictures from the right. The bus’ wheel is mistakenly assigned to the car category. Also, objects that share many parts such as bicycles and
motorcycles are mistakenly merged to one category.



Figure 5. Overclustering results by merging 500 clusters using ground-truth labels. The resulting segmentation maps are more crisp
than their fully unsupervised counterparts in Figure 4. Further, similar object categories are not merged together. However at times, the
object is not fully segmented but just parts of it. This is likely due to the fact that some clusters segmenting an object also have a significant
background overlap and thus our precision-based cluster matching matches them to the background class.

Figure 6 shows some exemplary street scene images and
their corresponding parts masks. During evaluation of our
feature space clustering we ignore non-part pixels shown in
dark green.

References

[1] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 1209–1218, 2018. 4

[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, 2021. 1, 3

[3] A. Eriksson D. Edler and M. Rosvall. The
mapequation software package. GitHub. avail-

able online at http://www.mapequation.org and
https://github.com/mapequation/infomap. 1

[4] He et al. Masked autoencoders are scalable vision learners.
arXiv:2111.06377, 2021. 3

[5] Xinlei Chen et al. An empirical study of training self-
supervised vision transformers. ICCV, 2021. 3

[6] et al. Falcon, WA. Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, 3,
2019. 1

[7] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. NeurIPS, 2020. 1

[8] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning, 2020. 2



(a) Ade20k street scene images (b) Ade20k street scene parts masks

Figure 6. ADE20k street scene images and masks data visualized as used for overclustering results reported in Table 5.

[9] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 1

[10] Xu Ji, João F. Henriques, and Andrea Vedaldi. Invariant
information clustering for unsupervised image classification
and segmentation. In ICCV, 2019. 4

[11] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with gpus. arXiv preprint
arXiv:1702.08734, 2017. 1

[12] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten
Rother, and Piotr Dollár. Panoptic segmentation. In CVPR,
pages 9404–9413, 2019. 4

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. 2019. 1

[14] Wouter Van Gansbeke, Simon Vandenhende, Stamatios
Georgoulis, and Luc Van Gool. Unsupervised semantic seg-
mentation by contrasting object mask proposals. In ICCV,
2021. 1, 2, 4

[15] Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong,
and Lei Li. Dense contrastive learning for self-supervised
visual pre-training. In CVPR, pages 3024–3033, 2021. 2, 3

[16] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In CVPR, pages 633–641, 2017. 3


	. Appendix
	. Implementation details
	. Additional Experiments
	. Additional visualizations
	. Datasets Details
	PASCAL

	. COCO
	ADE20k



