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A. Additional Experimental Results
An extensive overview for the results visualized in Fig-

ure 4 are listed in Table S1.

B. GAN based SMOTE

Algorithm S2 GAN based synthetic minority oversampling
1: Inputs:

Hyper-parameters m, k ∈ N+

Train dataset DTrain = {(x0, y0), (x1, y1), . . . }, xi ∈ X , yi ∈ Y
Trained invertible GAN E : X → Z , G : Z → X , Z = Rn

datapoint (xs, ys)
2: Encode dataset

DTrain ← {(x0, y0, z0), (x1, y1, z1), . . . }, zi = E(xi)
3: Determine m nearest neighbours

N ← {zN
0 , zN

1 , . . . , zN
m}

according to zN
i = argmin

zj ̸∈{zN0 ,...,zN
i−1

}∥zs − zj∥2 s.t. ys = yj

4: Randomly choose k neighbours from that set
N ← {xN

π(0), x
N
π(1), . . . , x

N
π(k)}

5: Uniformly sample zAugment ∼ U [Simplex [N ]]
6: Return (G(zAugment), ys)

Figure S1. The effect of varying the number of additional neigh-
bors used in the simplex (k) against the number of close neighbors
sampled from. We see strongest results where k = 3 (note that k
is the number of neighbors, so in this case it corresponds to a 4-
simplex), and where we sample from a greater range of neighbors.
k = 1 corresponds to standard SMOTE.

C. Efficient Uniform sampling from the Con-
vex Hull of Points

Here, we briefly summarize the strategy for efficiently
uniformly sampling from the convex hull of a set of k points
in an n-dimensional space where k ≤ n + 1, as we have
only been able to find related approaches in the literature
for k = 3 [60].

Under minimal assumptions, e.g., the points are sampled
with continuous noise, with probability 1 the k points form
a k − 1 dimensional simplex, or generalized triangle. This
allows us to sample efficiently using an inductive process.
Given a point ρi sampled from a i dimensional simplex, Si

we can uniformly sample from an i+1 dimensional simplex,
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Figure S2. Visualization of the uniform simplex sampling strategy
for improved data diversity. Given a datapoint (green) and its near-
est m neighbours with the same target label (orange) we randomly
choose k neighbours to form a simplex. datapoints with other la-
bels (blue crosses) or too large distance (blue dots) are ignored.

Si+1 = Si ∪ {pi} by choosing

ρi+1 = λ1/iρi + (1− λ1/i)pi+1 (S1)

where λ is sampled from the uniform distribution U [0, 1].
The base case is S1 = {p1}, and ρ1 = p1.
Note that when the assumption fails, and points are co-

linear and do not form a simplex, the algorithm degrades
reasonably. Sampled points will lie inside the convex hull
of points, but the samples will not be uniform.

D. Architecture, Dataset and Details
The classifiers are built upon pretrained ResNet50

models [39]. For each of the binary attributes of the
CelebA dataset, one classifier is trained. As the protected
attribute we chose “male”7. Each model was trained for
3 · 106 images and evaluated every 500 batches using
Adam (lr = 10−4) and a batch size of 64. Images were
center-cropped and down-scaled to 128 × 128. We use
RandAugment with N = 3, M = 15 for every experiment
unless otherwise stated. The reported numbers are the
retrieved peak performance during the training period,
evaluated on the hold-out evaluation dataset. We rely on
the analysis of [66] and report the means over the attributes
with gender independent label quality: “bags under
eyes”, “bangs”, “black hair”, “blond hair”, “brown hair”,
“chubby”, “eyeglasses”, “gray hair”, “high cheekbones”,
“mouth slightly open”, “narrow eyes”, “smiling”, “wearing
hat”. Rows labelled with * show results achieved using the
codebase of [82]. For the invertible GAN model, we choose
InvGAN [32], however the requirements on the model are

7The labels in CelebA refer to an externally assigned perceived binary
gender, and not to self-assigned gender identity. Although the binary na-
ture of the label does not reflect the true distribution of either, we are re-
stricted to the annotations available in the dataset.



Method
Baseline

multi task
[82]

Weighting
[82]

Domain Disc.
[70, 82]

Domain Indep.
[82]

Uniconf. Adv.
[4]

Baseline
single task

[66]

GAN Debiasing
[66]

Regularized
[61,83]

g-SMOTE +
Adaptive Sampling

[ours]

g-SMOTE
[ours]

Baseline
FairMixup

[20]

FairMixup
[20]

Accuracy 91.79 91.45 91.78 91.24 90.86 92.47 92.12 91.05 92.56 92.64 92.74 88.46
Max. grp. acc. 93.66 93.35 93.69 93.04 93.15 94.46 94.03 94.42 94.44 94.59 93.85 90.42
Min. grp. acc. 89.52 89.06 89.39 88.93 88.08 90.14 89.85 87.86 90.36 90.35 91.44 86.36

TPR 64.51 64.02 62.80 70.74 50.15 67.90 66.13 54.20 67.11 66.14 79.13 46.67
Max. grp. TPR 72.29 67.41 70.13 75.61 59.59 73.88 70.36 56.11 74.06 73.43 80.89 47.85
Min. grp. TPR 57.09 59.74 55.06 66.05 40.72 61.34 61.25 52.34 59.78 58.32 72.92 44.27

DEO 15.20 7.67 15.08 9.56 18.87 12.54 9.11 3.77 14.28 15.11 7.97 3.58
DEODD 18.14 9.00 18.10 13.29 21.48 16.54 12.04 5.06 19.30 19.32 10.06 4.29

Table S1. Fairness methods on the CelebA dataset. We report mean scores over the 13 labels [66] call gender independent. We report the
model with the greatest min. group accuracy over the training period.

Attribute Name Baseline AdaptiveSMOTE

Wavy Hair 76.95± 0.32 77.86± 0.11
Big Lips 80.49± 0.15 80.30± 0.16
Eyeglasses 99.23± 0.01 99.25± 0.02
Attractive 78.80± 0.14 79.17± 0.10
Brown Hair 81.26± 0.05 81.18± 0.12
Wearing Necklace 80.30± 0.01 80.30± 0.01
High Cheekbones 85.53± 0.11 85.61± 0.22
Receding Hairline 91.08± 0.09 91.49± 0.11
Wearing Hat 98.21± 0.02 98.22± 0.08
Black Hair 86.40± 0.10 87.19± 0.26
Gray Hair 95.28± 0.09 95.39± 0.08
Pale Skin 95.26± 0.06 95.43± 0.07
Smiling 91.64± 0.17 91.91± 0.09
Chubby 89.29± 0.02 89.35± 0.12
Young 82.28± 0.10 82.99± 0.24
Wearing Earrings 83.46± 0.14 83.67± 0.23
Big Nose 70.71± 0.29 71.12± 0.32
Oval Face 70.67± 0.10 71.15± 0.03
Bags Under Eyes 73.24± 0.37 73.69± 0.19
Bushy Eyebrows 87.08± 0.09 87.36± 0.08
Mouth Slightly Open 93.46± 0.12 93.58± 0.06
Rosy Cheeks 90.87± 0.11 90.97± 0.09
Arched Eyebrows 76.67± 0.35 76.83± 0.26
Blurry 95.58± 0.05 95.61± 0.06
Wearing Lipstick 86.14± 0.17 86.44± 0.14
Blond Hair 91.96± 0.05 92.10± 0.13
Heavy Makeup 84.13± 0.36 84.13± 0.01
Pointy Nose 69.20± 0.16 69.86± 0.11
Straight Hair 77.72± 0.42 77.98± 0.12
Bangs 94.67± 0.17 94.72± 0.04
Double Chin 91.43± 0.04 91.57± 0.17
Narrow Eyes 91.97± 0.08 92.32± 0.21

Table S2. Min. group accuracy for individual attributes of CelebA.
Reported are the means and standard deviations over 3 restarts of
all attributes with at least 11 positive and negative datapoints per
group. The protected attribute is “male”. We evaluate the model
with greatest min. group accuracy over the training period. Both
methods were trained on 10000 images from the CelebA training
set.

low: Aside from state-of-the-art image quality, we need
decent interpolation capabilities as well as a reasonable
semantic structure of the latent space.

Regularized Approach. The regularized model pre-
sented in Figure 4 is based on a regularizer used in [83].
Given training data D = {xi, yi, ai}ni=1 and a model f (as
above) that outputs classification scores in [0, 1], we define
the regularizer RDEO as

RDEO(f) :=

(
1

n11

∑
D11

f(xi)−
1

n10

∑
D10

f(xi)

)2

,

where Dya = {(x̃, ỹ, ã) : ã = a, ỹ = y, (x̃, ỹ, ã) ∈ D} and
nya = |Dya| for g ∈ {0, 1}.

We simply add the fairness regularizer to the loss and
trade-off fairness with the accuracy of the classifier via a hy-
perparameter λ. We minimize L̂(f) =

∑n
i=1 l(f(xi), yi) +

λRDEO(f).


