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Supplementary Material

In the following pages, we present additional qualitative
examples of PolyWorld applied to the CrowdAI test dataset
[3]. In particular, we show a larger comparison with the
state-of-the-art Frame Field Learning (FFL) approach [1],
additional results on challenging scenarios and on randomly
sampled images from the CrowdAI test set, as well as fail-
ure cases of our approach. Moreover, we show an ablation
study to evaluate the individual components of our method.

Qualitative results

A qualitative comparison between PolyWorld and the
Frame Field Learning (FFL) method are shown in Figure 4.
The images represent the results of the two different poly-
gon extraction approaches on complex scenes selected from
the CrowdAI test set. Overall, PolyWorld utilizes a lower
amount of vertices compared to FFL, generating more reg-
ular contours. Results of our approach on challenging sce-
narios are shown in Figure 5. PolyWorld demonstrates to
generalize well on complex and unusual building shapes,
managing to detect and connect precisely all the building
corners also in presence of severe occlusions. The vertex
connections and the final polygon quality is noticeable even
on buildings having curved walls as illustrated in the images
in the bottom row of Figure 5. In Figure 6 additional Poly-
World polygonizations on randomly sampled images of the
test set are shown. It is worth noting that some of the poly-
gon predictions do not seem to be aligned with the build-
ing boundaries, especially on tall buildings. This is caused
by the fact that many images of the CrowdAI dataset are
off nadir, but the annotations are aligned to the base of the
buildings. The vertex detection and selection procedure is
shown on a sampled CrowdAI test image in Figure 1.

Failure cases

Even though PolyWorld experimentally proves to gen-
erate a reliable set of vertices and strong connections, it is
interesting to show some failure cases caused by the opti-
mal connection network. In Figure 2 we visualize three ex-
amples of wrong vertex matches, resulting from the linear
sum assignment problem. Red points describe vertices as-
signed to the diagonal of the permutation matrix and there-
fore are filtered, while valid vertices and connections are
coloured in green and cyan, respectively. On the left im-
age two corners of the top-left building are assigned to the
right building, generating an evident artifact. In the right
image the network discards some false-negative corners and

Figure 1. Vertex detection heatmap. Top-left: Probability map
generated by the Vertex Detection Network. Top-right: probability
map after Non Maximum Suppression (please zoom in for better
view). Bottom-left: top-256 highest peaks. Green points indi-
cate valid vertices, while red points indicate discarded vertices.
Bottom-right: final result.

does not complete the building footprint. Another artifact is
generated by wrongly connecting two building corners to a
false-positive vertex as shown in the bottom image. These
artifacts are very rare and therefore their impact in the seg-
mentation performance is limited.

Ablation study
We conduct additional experiments to evaluate the per-

formance contribution provided by different components of
PolyWorld. In particular:

• The model is evaluated discarding the offsets that re-
fine the position of the vertices.

• The model is evaluated only using Sclock or S>
count as

score matrix S, rather than the ensemble of the two.

• The model is retrained without using the GNN. Re-
moving the GNN automatically means discarding the
vertex offsets and the global aggregation of descrip-
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PolyWorld offset score matrix S AP AP50 AP75 APS APM APL AR AR50 AR75 ARS ARM ARL

full method off Sclock + S>
count 58.7 86.9 64.5 31.8 80.1 85.9 71.7 92.6 79.9 47.4 85.7 94.0

full method on Sclock + S>
count 63.3 88.6 70.5 37.2 83.6 87.7 75.4 93.5 83.1 52.5 88.7 95.2

full method on Sclock 62.1 87.2 69.2 36.0 83.2 78.9 75.3 93.5 83.0 52.6 88.6 92.4
full method on S>

count 60.3 84.5 66.8 36.4 80.3 56.6 72.5 89.9 79.9 50.4 85.6 86.3
no GNN off (n/a) Sclock + S>

count 56.8 85.5 62.9 30.7 78.0 80.1 70.2 92.0 78.6 46.2 84.1 92.3
no Langle on Sclock + S>

count 63.6 88.5 70.6 37.7 83.9 88.1 75.9 93.7 83.6 53.2 89.1 95.6

Table 1. Ablation study. MS COCO [2] results on the CrowdAI test computed for different configurations of PolyWorld.

PolyWorld offset score matrix S IoU C-IoU MTA
full method off Sclock + S>

count 89.9 86.9 35.0°
full method on Sclock + S>

count 91.3 88.2 32.9°
full method on Sclock 90.9 88.1 33.0°
full method on S>

count 88.4 84.7 33.0°
no GNN off (n/a) Sclock + S>

count 89.2 86.3 35.3°
no Langle on Sclock + S>

count 91.4 88.6 34.0°

Table 2. Ablation study. Intersection over union (IoU), mean tan-
gent angle error (MTA), and complexity aware IoU (C-IoU) results
on the test-set of the CrowdAI dataset [3] computed for different
configurations of PolyWorld.

tors. In this case, the visual descriptors d are directly
used for matching.

• The model is retrained discarding the angle loss
Langle. Only the segmentation loss Lseg is kept to
learn the offsets.

Quantitative results of the ablation study are reported in
Table 1 and Table 2.

Discarding the refinement offsets results in a noticeable
drop in detection and segmentation performance. Moreover,
the polygons visually appear not as regular as the full Poly-
World results, as shown in Figure 3b.

Equivalent or even higher detection scores than the full
PolyWorld method are achieved retraining the model with-
out angle loss. Unfortunately, in this configuration Poly-
World is not encouraged to generate sharp building corners
and the visual impact of the resulting building shapes is not
as good as the polygons produced by the method trained
with Langle, as shown in Figure 3c. This phenomenon is
also explained by the fact that this configuration does not
perform as well as the full method is terms of MTA (see
Table 2).

Without GNN, PolyWorld still manages to make mean-
ingful vertex connections even though it is not rare to en-
counter missing footprints or wrong matches, as shown in
Figure 3d.

The quantitative results using S = Sclock and S =
S>
count are reported in Table 1 and Table 2. As expected,

only using Sclock or S>
count leads to lower segmentation

scores compared to the combination of the two: S =
Sclock + S>

count.

Figure 2. Examples of wrong connections. Green points indicate
valid vertices. Red points indicate discarded vertices. Generated
connections are shown in cyan.

Runtimes
The Frame Field Learning [1] paper reports a compu-

tation time of 0.04s on CrowdAI using a GTX 1080Ti.
PolyWorld achieves a comparable computation time, taking
0.047s per image with the same configuration (or 0.024s on
a GTX 3090).
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(a) Magenta: Ground truth polygons. Cyan: Results of the full PolyWorld method.

(b) Magenta: PolyWorld results obtained discarding the refinement offsets. Cyan: Results of the full PolyWorld method.

(c) Magenta: PolyWorld results obtained discarding the angle loss Langle. Cyan: Results of the full PolyWorld method.

(d) Magenta: PolyWorld results obtained discarding the Graph Neural Network. Cyan: Results of the full PolyWorld method.

Figure 3. Ablation study: qualitative results obtained with different configurations of PolyWorld.

3



Figure 4. Examples of building extraction and polygonization on CrowdAI test dataset. Top row: Frame Field Learning (FFL) approach [1]
with Res101-UNet as backbone and ACM polygonization. Bottom row: PolyWorld results.
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Figure 5. Results of PolyWorld on challenging images from the CrowdAI test dataset. First row: unusual and complex buildings. Second
row: buildings with corners occluded by vegetation. Third row: buildings with curved walls.

5



Figure 6. Results of PolyWorld on randomly sampled images from the CrowdAI test dataset.
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