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In this supplementary material, we provide more detailed information to further explain our proposed method. First, we
introduce the details about our framework and hyper-parameters. Next, we present the intermediate results throughout our
optimizing iterations to facilitate illustrating the reasons why our method works, i.e., why we can preserve the deraining
capabilities of the compressed model without original data. Then, we display more experimental results to demonstrate
the superiority of our method. Finally, we extend our framework to image dehazing tasks, and we are looking forward to
bringing more inspiration for future studies.

1. Implementation Details
1.1. Framework Details

For a fair comparison, we follow the official open source implementation of the state-of-the-art methods and adopt their
released pre-trained models, including HINet [1]1, MPRNet [17]2, AGANet [11]3, DuRNet [10]4. For each model, we hook
the deep features from the penultimate layer to calculate the batch diversity loss (Lorth) mentioned in the paper. And we
implement the similarity measure for the network outputs utilizing the most commonly used L1 regularization. We collect
clean images by random sampling in the Place365 dataset [20] which contains a rich set of scenes. It is worth clarifying that
these clean images do not appear in the training set or test set of the pre-trained networks.

1.2. Hyper-parameters

We jointly optimize random input noise to images and distill the pruned model, the learning rates of these two branches
are set to 5 · e−2 and 1 · e−4, respectively. Their magnitude differences are attributed to the different value levels of image
pixels and model weights. The distillation loss factor (λKD) is set to 1.0, which is required relatively loosely. We set the
batch diversity loss factor (λorth) to 0.05 and explore its sensitivity below.

2. Optimization Illustration
We display the intermediate results of our framework throughout the convergence process. As shown in Fig. 1, the

performance of the pruned model (HINet [1]) drops without fine-tuning. To preserve the performance of the pruned model,
we jointly reconstruct diverse and in-distribution degraded images using dream loss (Ldream) and leverage these images to
distill the pruned model using distillation loss (LKD). As shown in Fig. 1, with the total loss converges, on the one hand,
we achieve to reconstruct diverse rainy images which resemble the original distribution, on the other hand, we distill the
pruned model to refine its deraining performance. Thus, we can compress the pre-trained deraining model while preserving
its capabilities of handling various degradation characteristics.

∗Equal contribution. † Corresponding author.
1https://github.com/megvii-model/HINet
2https://github.com/swz30/MPRNet
3https://github.com/rui1996/DeRaindrop
4https://github.com/liu-vis/DualResidualNetworks
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Test2800 [4] Test1200 [18] Test100 [19] Rain100H [15] Rain100L [15] Average
Deraining Models PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DerainNet [3] 24.31 0.861 23.38 0.835 22.77 0.810 14.92 0.592 27.03 0.884 22.48 0.796
SEMI [14] 24.43 0.782 26.05 0.822 22.35 0.788 16.56 0.486 25.03 0.842 22.88 0.744

DIDMDN [18] 28.13 0.867 29.65 0.901 22.56 0.818 17.35 0.524 25.23 0.741 24.58 0.770
UMRL [16] 29.97 0.905 30.55 0.910 24.41 0.829 26.01 0.832 29.18 0.923 28.02 0.880

RESCAN [9] 31.29 0.904 30.51 0.882 25.00 0.835 26.36 0.786 29.80 0.881 28.59 0.857
PReNet [13] 31.75 0.916 31.36 0.911 24.81 0.851 26.77 0.858 32.44 0.950 29.42 0.897
MSPFN [6] 32.82 0.930 32.39 0.916 27.50 0.876 28.66 0.860 32.40 0.933 30.75 0.903

`1 [5] (−37.7%) 27.81 0.844 26.32 0.781 24.41 0.782 16.07 0.459 27.72 0.831 24.47 0.739
erk [2] (−37.7%) 32.84 0.931 31.82 0.888 28.44 0.868 27.76 0.844 34.32 0.946 31.04 0.895

lamp [7] (−37.7%) 33.07 0.934 32.38 0.899 29.09 0.879 28.82 0.864 35.59 0.957 31.79 0.907
Ours (−37.7%) 33.40 0.938 32.70 0.912 30.07 0.894 29.19 0.874 36.56 0.965 32.38 0.917

MPRNet [17]

original 33.64 0.938 32.91 0.916 30.27 0.897 30.41 0.890 36.40 0.965 32.73 0.921
`1 [5] (−41.3%) 29.34 0.887 27.49 0.831 24.92 0.816 18.66 0.599 29.49 0.888 25.98 0.804

erk [2] (−41.3%) 32.37 0.929 31.09 0.895 25.30 0.835 23.46 0.783 28.74 0.880 28.19 0.864
lamp [7] (−41.3%) 33.23 0.936 32.52 0.912 27.58 0.872 27.21 0.862 30.98 0.919 30.30 0.900

Ours (−41.3%) 33.79 0.940 32.95 0.919 30.12 0.906 29.54 0.890 36.94 0.969 32.67 0.925
HINet [1]

original 33.91 0.941 33.05 0.919 30.29 0.906 30.65 0.894 37.28 0.970 33.03 0.926

Table 1. Data-free pruning results on Test2800 [4], Test1200 [18], Test100 [19], Rain100H [15], and Rain100L [15]. We compress the pre-
trained state-of-the-art deraining models HINet [1] and MPRNet [17]. Our method can reduce about 40% of the FLOPs while maintaining
comparable performance with these original models, which outperforms other modern pruning methods. And the deraining performance
of our pruned models still outperforms many other deraining models by a large margin. Best scores of original model and pruned model
are underlined and highlighted.

3. More Results
3.1. Quantitative Results on Rain13k

Rain13k includes five test datasets, which are Test2800 [4], Test1200 [18], Test100 [19], Rain100H [15], and Rain100L [15],
respectively. We compress state-of-the-art deraining networks HINet [1] and MPRNet [17] on Rain13k, since these two meth-
ods outperform other methods by a margin, as shown in Tab. 1. We compress about 40% of the FLOPs while maintaining
comparable performance with the state-of-the-art methods in the absence of the original data.

3.2. Qualitative Results

In this section, we compare our proposed method with LAMP [7] on Rain13k and RainDrops [11] datasets, and more
results are shown in Fig. 2, Fig. 3, and Fig. 4. For a fair comparison, we ensure that all pruned models have the same
FLOPs. We can observe that our proposed method can remove the rain more completely than LAMP, which demonstrates
the effectiveness or our proposed method. Furthermore, our method can remove many types of rain, from rain streaks to rain
drops in various directions and densities, which demonstrates the generalization of our proposed method.

3.3. Dreamed Images Visualization

We display the reconstructed images with dreaming approach. Our dreamed degraded images based on the deraining
model pre-trained on Rain13k and RainDrops datasets, as shown in Fig. 5. It can be seen that with the introduced batch
diversity loss Lorth, these dreamed images appear various types of rain, including different orientations and densities. In
contrast, without Lorth, those images tend to appear a similar rain style. This demonstrates that we can improve the diversity
of our reconstructed rainy images by increasing the distance between content-agnostic degradation representations.

4. Extension to Image Dehazing
To explore the potential of our data-free compression framework for other low-level tasks, we extend our method to the

image dehazing task, as shown in Tab. 2. It can be seen that, we compress about 41.5% FLOPs the pre-trained state-of-the-art
dehazing model FFA-Net [12] while maintaining its original performance, which outperforms other modern pruning methods



`1 [5] erk [2] lamp [7] Ours original [12]
FLOPs 168 G 287 G
PSNR 20.93 27.40 28.60 32.28 33.57
SSIM 0.861 0.915 0.939 0.976 0.984

Table 2. Data-free pruning results on SOTS Outdoor dataset [8]. We compress about 41.5% FLOPs the pre-trained state-of-the-art dehazing
model FFA-Net [12] while maintaining its original performance, which outperforms other modern pruning methods by a large margin.

by a large margin. And the qualitative results of our reconstructed hazy images are shown in Fig. 7. With batch diversity loss
Lorth, we can reconstruct a variety of haze types within a batch. Thus, we can provide sufficient supervision for distilling the
pruned model and preserving its dehazing performance without original data. This demonstrates the potential to extend our
approach to other low-level tasks.
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Figure 1. The performance of the deraining model drops after direct pruning. Throughout the optimization process, we jointly optimize
random noise to diverse rainy images and distill the pruned model. As the total loss converges, the pruned model gets more and more
improved until achieving a comparable performance with the original model. We sample two images within a batch for a better view.



(a) Input (b) LAMP [7] (c) Ours (d) original

Figure 2. Qualitative results of pruning image deraining model HINet [1] on Rain13k. Our method preserve the performance of the pruned
model on handling various degradation characteristics, and outperforms modern pruning method LAMP [7] by a margin.



(a) Input (b) LAMP [7] (c) Ours (d) original

Figure 3. Qualitative results of pruning image deraining model MPRNet [17] on Rain13k. Our method preserve the performance of the
pruned model on handling various degradation characteristics, and outperforms modern pruning method LAMP [7].



(a) Input (b) LAMP [7] (c) Ours (d) original

Figure 4. Qualitative results of pruning image deraining model AGANet [11] on Raindrops dataset [11]. Our method preserve the per-
formance of the pruned model on handling various degradation characteristics, and outperforms modern pruning method LAMP [7] by a
margin.
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Figure 5. Our dreamed degraded images by inverting the deraining model pre-trained on Rain13k datasets. With batch diversity loss Lorth,
we can reconstruct a variety of rain types within a batch.
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Figure 6. Our dreamed degraded images by inverting the deraining model (AGANet [11]) pre-trained on RainDrops dataset [11]. With
batch diversity loss Lorth, we can reconstruct various raindrops types within a batch.

(a) w Lorth

(b) w/o Lorth

Figure 7. Our dreamed degraded images by inverting the pre-trained dehazing model (FFA-Net [12]). With batch diversity loss Lorth, we
can reconstruct a variety of haze types within a batch. This demonstrates the potential to extend our approach to other low-level tasks.


