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A.1. Local Transformer
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(a) The architecture of Local Transformer (LT). We omit Layer-
Norm [1] for simplicity.
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(b) The architecture of Local Self-attention (LSA).

Figure 8. We propose a strong sequential module, i.e., Local
Transformer (LT), which is used in the VLT backbone. It is built
based on QANet [14], which validates the effectiveness of com-
bining TCNs with self-attention, and the difference is that we fur-
ther leverage Gaussian bias [5, 13] to introduce local contexts to
the self-attention module, i.e., Local Self-attention (LSA). (L: the
number of LT layers, we set it to 2 as default; RPE: relative po-
sitional encoding [10]; D: the window size of the Gaussian bias.)

Sequence modeling plays a key role in the CSLR task.
Capturing long-term temporal dependencies was proven to
be effective on many sequence modeling tasks, e.g., neural
machine translation [12], and speech recognition [4]. Thus,
it is reasonable to introduce globally-guided architectures,
e.g., BiLSTM [8, 9] and vanilla Transformer [2, 7], to the
CSLR task. However, within a sign language video, each
gloss is short, consisting of only a few frames. This can
be the reason why a locally-guided architecture, i.e., TCNs,
has also been adopted to CSLR successfully [3]. Motivated
by this, we propose a mixed architecture, Local Transformer
(LT), to leverage both global and local contexts for sequence
modeling for CSLR.

As shown in Figure 8a, each LT layer consists of a depth-
wise TCN layer, a local self-attention (LSA) layer, and a
feed-forward network. Since the depth-wise TCN layer and

the feed-forward network are the same as those used in [12,
14], below we only formulate the LSA layer.

As shown in Figure 8b, given a feature sequence Z ∈
RT×d, three separate linear layers first project Z into
queries Q ∈ RT×d, keys K ∈ RT×d, and values V ∈
RT×d, respectively. We adopt multi-head self-attention
which is more effective than its single-head counterpart [12]
by splitting Q,K,V into {Qh}Nh

h=1, {Kh}Nh

h=1, {Vh}Nh

h=1,
respectively, where Qh,Kh,Vh ∈ RT×d/Nh and Nh is the
number of heads. Then scaled dot-product attention [5, 12]
is used to compute the attention scores for each head as fol-
lows:

scores =

{
(Qh)(Kh)′√

d/Nh

}Nh

h=1

∈ RNh×T×T . (16)

In order to model local contexts, we adopt Gaussian bias
to emphasize the relations between close query-key (QK)
pairs and weaken the relations between distant QK pairs.
Given a QK pair (qh

i ,k
h
j ), the Gaussian bias is defined as:

biashij = − (j − i)2

2σ2
, (17)

where σ = D
2 , and D is the window size of the Gaussian

bias [5]. The Gaussian bias is head-shared; that is, it is
common among the heads since Eq. 17 is independent to h.
Then the attention weights of each value vector are obtained
from a softmax layer, and the output of the self-attention
module is:{

Oh = softmax(scoresh + biash)Vh

OSA = concat({Oh}Nh

h=1)W
O ∈ RT×d ,

(18)

where WO ∈ Rd×d denotes the output linear layer.
In terms of the choice of D, we consider that the ratio of

frame length to gloss sequence length, i.e., Ti/Ni, where i
denotes i-th training sample, is a good estimate of the win-
dow size as it represents the average frame length of a gloss,
which is similar to the idea of the window size. Thus, we
set D as:

D =
1

|tr|

|tr|∑
i=1

Ti

Ni
, (19)

where |tr| is the number of training samples. More
specifically, D = 6.3, 6.3, 15.8 for the PHOENIX-2014,
PHOENIX-2014-T, and CSL dataset, respectively.

We conduct ablation studies to validate the effectiveness
of the LSA and the depth-wise TCN (DTCN) layer. As
shown in Table 9, both the LSA and the DTCN can clearly
improve the model’s performance, which establishes our LT
as a strong sequential module for the CSLR task.



Method LSA DTCN WER%

VGG11+TF
× × 25.2
✓ × 22.7
✓ ✓ 21.5

Table 9. Ablation study for the local Transformer. (TF: Trans-
former; LSA: local self-attention; DTCN: depth-wise TCN.)

Factor 1 5 10 15 20 25

Dev 22.3 22.3 22.8 23.1 23.2 22.6
Test 23.4 22.8 22.9 22.8 23.7 23.4

Table 10. Fine-tuning results of VAC [6] on the VLT backbone.

A.2. Fine-tuning Results of VAC

We compare VAC with our SEC as shown in Table 4 in
the main section. For fair comparisons, we fine-tuned the
factor of the VA loss as [6] on the VLT backbone based on
the open-sourced codes1. As shown in Table 10, the optimal
factor is 5.

A.3. Choice of γx, γy
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Figure 9. Visualization results for different γx, γy . Since for real
practice, the height and the width of the spatial attention masks are
usually the same, we set γx and γy to the same value.

γx, γy 3 7 14 21 28

Dev 21.3 21.2 21.1 21.4 21.3
Test 21.7 21.9 20.8 21.5 21.6

Table 11. Comparison among different γx, γy

We conduct experiments to compare the performance of
different γx, γy as shown in Table 11. Among them, either
too large γx, γy (cannot cover entire informative regions) or
too small γx, γy (cover too many trivial regions) can harm
the model’s performance. The model can achieve the best
performance when γx = γy = 14.

A.4. Using Keypoints Heatmaps as Filters

In this work, we use keypoints heatmaps as guidance for
the spatial attention module. To better validate its effective-

1https://github.com/ycmin95/VAC CSLR

Method WER%

Filters 22.9
Guidance 20.8

Table 12. Comparison between using keypoints heatmaps as filters
and guidance for the spatial attention module.

ness, we conduct one more experiment that directly use key-
points heatmaps as filters to modulate the feature maps, i.e.,
multiplying the feature maps with the keypoints heatmaps
directly. However, as shown in Table 12, using heatmaps as
filters can damage the model’s performance. We think this
is because when we use heatmaps as guidance, the visual
module can be enforced to concentrate on informative re-
gions by LSAC , but this enforcement is absent if we simply
use keypoints as filters.

A.5. Visualization Results for LSEC .
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Figure 10. The box plot of the difference between positive and
negative distance in LSEC . The blue line denotes the median, and
the green line denotes the mean.

We draw a box plot on the difference between the pos-
itive and negative distance in LSEC as shown in Figure
10. Since our distance function d(·, ·) = 1 − cos(·, ·),
the differences must lie in [−2, 2]. According to the po-
sition of the median, almost half of the batches can achieve
a large difference (≤ −1.25). Also, most of the batches
(at least 75%) have a smaller positive distance (difference
< 0). This means that the positive and negative samples
are well-separated, which again validates the effectiveness
of our SEC.

A.6. Discussion

As shown in Table 2 in the main section, the effective-
ness of the post-processing module implies that the quality
of the pose keypoints heatmaps plays a key role in our SAC.
Although our post-processing module can refine the origi-
nal heatmaps, the refined heatmaps may not be optimal. In
the future, we will try to co-train the keypoints heatmap ex-
tractor, e.g., HRNet [11], with the CSLR backbones to yield
better heatmaps. However, the co-training must introduce
more parameters and cost more GPU memory, thus there is
a trade-off between the co-training and our method.

https://github.com/ycmin95/VAC_CSLR
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