
Supplementary Material
Learning Graph Regularisation for Guided Super-Resolution

A. Hyperparameters

We report the hyperparameter settings for the evaluation
of our proposed method for RGB-guided depth map super-
resolution. Hyperparameters are reported for each dataset
and method. The experiments were conducted on the three
RGB-D datasets Middlebury [6, 13–16], NYUv2 [12] and
DIML [1, 9–11] with the following methods: Guided Filter
(GF) [4], the Static/Dynamic filter (SD) [3], the Pixtrans-
form [2], the MSG-Net [7], the Deformable Kernel Network
(DKN) and its fast version (FDKN) [8], the PMBANet [17],
and the Fast Depth Super-Resolution (FDSR) [5].

We train all learned methods using the Adam optimiser
with default parameters β1 = 0.9, β2 = 0.999, ϵ = 10−8

and a batch size of 8. For the Middlebury dataset, we train
for 2,500 epochs with an initial learning rate of 10−4 and
reduce it by factor 0.9 every 100 epochs. For the NYUv2
dataset, we train for 250 epochs with the same initial learn-
ing rate that is reduced by a factor of 0.9 every 10 epochs.
For the DIML dataset, the methods are trained for 150
epochs, again using an initial learning rate of 10−4 with a
reduction by a factor of 0.9 every 6 epochs. For all learned
methods we additionally tested the initial learning rate and
learning rate schedule proposed by the respective authors
(if available), and used the best configuration. For FDSR,
we therefore deviated from our default settings and chose
an initial learning rate of 5.0 · 10−4, with a 0.5× reduction
every 80,000 iterations. For PMBANet, we found a 0.1×
reduction every 100 (1000, 60) epochs for NYUv2 (Mid-
dlebury, DIML) to work best. Note that we did not conduct
any hyperparameter search for our proposed method.

We also report the hyperparameters used for the non-
learned approaches. We used the following values for the
SD filter, which we found to be the best performing among
the tested configurations: λ = 0.1, σg = 60 and σu = 30.
For Pixtransform we used the hyperparameters suggested in
the original manuscript.

B. Qualitative Results

In Figures A1, A2 and A3, we provide additional ex-
amples for qualitative comparison between our method and
selected methods from our quantitative evaluation; for the
Middlebury, NYUv2 and DIML datasets respectively. We
provide two additional examples for each upsampling fac-
tor and dataset combination. These results further con-
firm that the predictions obtained with our method compare
favourably to existing methods. In particular, we observe
the magnitude of errors for our method to be smaller com-

pared to the other approaches, especially along edges. For
many examples, we can additionally see that our method
facilitates smooth depth predictions in continuous areas,
whereas other methods exhibit higher noise. Visually, the
differences seem small for an upsampling factor of ×4,
however with larger upsampling factors they become more
apparent.

C. Learning Graph Weights
In Figure A4 we show additional examples of the dif-

ference between the total affinity of each pixel to its four
neighbours when the graph is defined on colour features
against the graph defined on learned features. These results
further show that our model is able to encourage the opti-
miser to provide smooth predictions in areas without depth
discontinuities. On the other hand, the model also shows
low predicted weights in areas that should not be smoothed,
thus providing crisper predictions.

D. Forward Pass Timing
We provide some time statistics for the forward pass of

the proposed method in Table A1. For reference: FDKN [8]
takes about 10 ms for a forward pass independently of the
scaling factor. The forward pass for the feature extractor
of our proposed method also takes about 15 ms. Pixtrans-
form [2], by far the slowest method among the compared
ones, takes more than 120 seconds for a 2562 patch. Our
Python implementation of the SD filter [3] takes few sec-
onds (this also depends on the upsampling factor), although
it is not directly comparable to our method as the SD filter
implementation does not take advantage of GPU accelera-
tion. The upsampling factor plays a major role for the run-
time of our method, because larger upsampling factors lead
to downsampling operators D that are less sparse, increas-
ing the time required to solve the linear system. Note that al-
though our method was implemented to leverage GPU par-
allelisation, there is still potential for further optimisations
that could improve runtime performance.

×4 ×8 ×16

forward time 79 (21) 111 (35) 305 (92)

Table A1. Forward pass times of our proposed method. Numbers
represent the mean time and (standard deviation) measured in mil-
liseconds, computed over the NYUv2 test set on single patches of
2562 pixels, on an NVIDIA GeForce RTX 2080 Ti.
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Figure A4. Additional examples of the importance of learned edge potentials. We visualise the total affinity of each pixel to its four
neighbours when derived from raw colour (top) or from deep features (bottom). Examples are from the Middlebury test set.
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