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Abstract

To describe complex emotional states, psychologists
have proposed multiple emotion descriptors: sparse de-
scriptors like facial action units, continuous descriptors like
valence and arousal, and discrete class descriptors like the
expressions of happiness and anger. According to Cohn et
al. [1], facial action units are sign vehicles that convey the
emotion message, while discrete or continuous emotion de-
scriptors are the messages perceived by observers. They
differ in their focuses. Sign vehicles focus on describing
facial behavior. Emotion messages focus on an observer’s
inference about the underlying state of the subject from fa-
cial behavior.

We describe a novel architecture for multiple emotion de-
scriptor estimation that incorporates this prior knowledge
about the differences between descriptive labels (sign vehi-
cles, like facial action units) and inferential labels (emo-
tion messages like discrete emotion expressions, valence,
and arousal). In our multi-level architecture, a common
set of low-level features of facial regions are fed into two
separate branches: one for descriptive labels and the other
for inferential labels. The differences between these two
branches reflects the differences between the two types of la-
bels. Sign vehicles are typically more specific and spatially
localized. Emotion messages are reflected across the entire
face. Our experiments on the ABAW3 challenge [9] dataset
demonstrate this approach outperforms all other submit-
ted approaches to multi-task learning. Code is available
at https://github.com/HKUST-NISL/ABAW3_
MultiEmotionNet.

1. Introduction

To study facial behavior, one can use two approaches:
describing the surface manifestations, e.g., how the facial
muscles move, or making inferences about the underly-
ing causes, e.g., emotions [1]. The first approach corre-
sponds to measuring sign vehicles, e.g., facial action units.

Observers using a sign-based approach are sometimes re-
ferred to as ”coders” because they ideally describe changes
in facial appearance objectively. Although individual dif-
ferences among coders, e.g., annotation skills, do affect la-
bels, the sign-based approach focuses on the facial behav-
ior itself, rather than the underlying causes. The second
approach corresponds to inferring messages (judgments).
These messages might be discretized to different categories
(e.g., expressions) or measured along different continuous
dimensions (e.g., valence and arousal). Observers following
a message-based approach are often referred to as ”judges”
or ”raters” because they need to infer emotional messages
from facial appearance. The measurement of messages is
much more affected by individual differences among raters,
such as gender, personality, and culture, than the measure-
ment of sign vehicles, because inferring messages relies
upon interpretation of the facial appearance. Understand-
ing the differences between these two approaches is the key
to designing an effective architecture for estimating them
simultaneously.

Sign vehicles like facial action units are external mani-
festations of an underlying emotional state. However, in-
ferring emotional states purely from facial action units is
usually not accurate. Facial action units are an incomplete
and often heavily quantized (e.g., on a binary or 0 to 5 in-
teger scale) descriptions of the facial muscles’ activation.
They focus on specific facial regions while ignoring other
parts. Thus, they cannot capture all of the nuances about
the facial expression. This suggests that it is essential to
extract more low-level features than the number of AUs de-
scribed by the facial action coding system to make accurate
inferences about emotion messages.

Measuring emotional messages relies less on a detailed
description of certain facial regions, and more on integra-
tion of information from across multiple facial regions.
While an observer can infer the mental state of a person
from a small part of face, such as eyes, the inference can
be more accurate if the observer gathers the evidence from
the entire face. Therefore, our architecture projects visual
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features from different facial regions into a shared feature
space. The feature learning of these facial regions is par-
tially guided by AU labels, so that we can better exploit the
richer information available in a multi-task framework, but
also includes additional information. After projection, the
features are integrated by averaging to obtain a consensus
feature vector. This consensus feature vector is used as the
basis of inference about the emotion messages (i.e., facial
expression, valence, and arousal).

Our main contributions are as follows:

• We propose a novel model architecture, the Sign-and-
Message Multi-Emotion Net (SMM-EmotionNet) that
simultaneously estimates both descriptive labels (i.e.,
the facial action units) and inferential labels (i.e., the
facial expressions, valence, and arousal).

• We employ the psychological prior knowledge in our
architecture design to regularize the multiple emotion
descriptor estimation. This is particularly helpful in
the absence of complete emotion annotations, and en-
ables us to integrate information across more datasets
to improve performance.

2. Related Work

Multitask emotion models are scarcer than uni-task emo-
tion models, mainly because of the lack of datasets with
complete annotations of multiple emotion descriptors. Re-
cently, since the release of the Aff-wild and the Aff-wild2
dataset [13, 14, 24], there has been an increasing focus on
the simultaneous prediction of three emotion descriptors:
facial action units (AU), facial expressions (EXPR) and
valance/arousal (VA) [15].

In the ABAW2 Challenge [10], Deng et al. [3] proposed
a light-weight CNN-RNN model to predict three emotion
descriptors in video sequences. In their uni-modal (visual
modality) approach, they used a common architecture: a
feature extractor shared by multiple tasks, followed by sev-
eral branches. Each branch corresponds to one task. Since
they did not recognize the different properties of each task,
they used similar branches for all of them. A similar archi-
tecture was used in their approach [2] submitted to the first
ABAW Challenge.

Zhang et al. [25] designed a dedicated architecture for
three emotion descriptors prediction in the second ABAW
Challenge. Making and assumption about the relationship
between them, they designed a serial recognizer: AU (ac-
tion unit) → EXPR (facial expressions) → VA (valence
and arousal), which proceeded from local action units to
global emotion states. Their work and our work both aim to
employ prior knowledge about the relationship of multiple
emotion descriptors in architecture design. However, since
we utilize the theory proposed by [1], the data flows in our

model along two parallel branches: one from the facial re-
gions to the sign vehicles space (AU) and another from the
facial regions to the message space (EXPR and VA).

Kollias et al. [11] proposed the ”co-annotation” method
utilizing prior knowledge about the relationship between fa-
cial expressions and action units, which provides better ro-
bustness to data distribution shifts. They assigned annota-
tions to missing labels based on the labels of other emo-
tion descriptors. For example, ”Happiness” is automati-
cally assigned if AU12 (lip corner puller) and certain AUs
are activated. They only considered relationships between
discrete emotions and action units for co-annotation. A
similar method was used in [12]. Our approach shares a
similar motivation as the co-annotation method: exploiting
prior knowledge for multiple emotion descriptors estima-
tion. However, rather than using prior knowledge to fill in
missing annotations, we utilize insights from psychological
studies in designing the structure of our network. This cap-
tures the similarities and differences between the descrip-
tors, but avoids the possible introduction of labeling errors
due to a rigid rule-based assignment.

3. Methodology

3.1. Model Architecture

The architecture of our proposed Sign-and-Message
EmotionNet is shown in Figure 1.

Sign Vehicle Space. We define the sign vehicle space as
the metric space for inferring AUs. To learn representations
for each AU, we use the Emotion Transformer proposed by
Jacob et al. [7], who suggested that exploiting intra-AU at-
tention and inter-AU correlations is the key component in
AU prediction. The Emotion Transformer is shown in parts
I and II of Figure 1.

In part I of Figure 1, the feature extractor is an Incep-
tionV3 model. The size of the extracted feature map is
17×17 and it has 768 channels. The feature map is then fed
into ROI attention modules that learn spatial attention maps
for each region. Each attention map has the same size as the
feature map. The element-wise product between the atten-
tion map and the feature map is fed into the ROI embedding
module to generate the feature vector of each region. The
general architecture of our part I is the same as Jacob et
al. [7], but some details are different, e.g., the number of
facial regions U and the feature dimension D.

In part II of Figure 1, the features of different facial re-
gions are fed into the Transformer model [22]. The Trans-
former model can learn the correlations among the different
regions, which has been proved highly effective in AU de-
tection [7]. We define the output tensors of the Transformer
model as the features in the sign vehicle space. The sign ve-
hicle space is composed of 12 D-dimensional spaces, one
for each of the AUs. Twelve fully connected (FC) layers
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Figure 1. The architecture of our SMM-EmotionNet.
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Figure 2. Russell’s circumplex model.

with a sigmoidal activation function map the AU metric
spaces to estimates of the probabilities of each AU’s oc-
currence.

Message Space. Russell’s circumplex model [19], a psy-
chological emotion model derived from large-scale crowd-
sourcing research and shown in Figure 2, is the motiva-
tion for our idea of learning the two emotion descriptors
in a shared message space. Russell’s circumplex model de-
scribes a 2-dimensional circular space. The horizontal axis
is valence. The vertical axis is arousal. Discrete facial ex-
pressions can be mapped onto this 2D space, indicating their
close relationship with valence and arousal. If this model
is accurate for most emotion datasets, then we expect that
learning a shared message space should regularize feature
learning of one emotion descriptor when the annotation of
the other is absent.

The message space is the metric space for facial expres-
sions, valence, and arousal. Given the features on the mes-
sage space, we feed them into two FC layers to estimate
EXPR and VA.

Notations. Given a facial image x, we first extract the

regions of interest features. We denote the uth ROI fea-
ture vector as f (u)(x) ∈ R

D. D is the feature dimension.
For all U ROI features, they are denoted as F (U)(x) =
{f (u)(x)}Uu=1.

The Transformer in part II (Figure 1) transforms the ROI
features into the AU metric space. We denote the number
of action units to be estimated as H . In this paper, H = 12.
Note that when U > H , it means that we have more facial
regions than the number of action units to be estimated. We
simply feed the first H ROI features into the Transformer.
The output of the Transformer is given by:

S(H)(x) = Φ(F (H)(x) + PE), (1)

where PE denotes the positional encoding vector. Φ de-
notes the Transformer function. S(H)(x) = {S(h)(x)}Hh=1,
where S(h)(x) ∈ R

D is the feature vector on the hth AU’s
metric space. We denote the weight matrix of the last FC
layer for hth AU as Wh ∈ R

D. The output of this FC layer
is given by:

yAU
h = 〈Wh, S

(h)(x)〉+ bh, (2)

where 〈·, ·〉 is the inner product between the weight vector
Wh and the feature vector S(h)(x) . bh is the bias term.

For the message space learning in part III (Figure 1), the
transformation module is learned for each region through
the back-propagation. Since we do not have assumptions on
the transformation module, we consider the simplest case: it
is a linear transformation matrix. We denote the weight ma-
trix as A(u) ∈ R

D×D for the uth region. The transformed
vector on the message space can be denoted as:

M (u)(x) = 〈A(u), f (u)(x)〉. (3)

Given multiple transformed vectors, we can obtain
the consensus by taking the average over all of them:
M̄ (U)(x) = 1

U

∑U
u M (u)(x). Next, we can compute the
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Figure 3. The process of averaging transformed vectors on the
message space.

prediction of cth class: ŷc = 〈Wc, M̄
(U)(x)〉 + bc, where

Wc is the weight vector for the cth class. Alternatively, we
can take the average over 〈Wc,M

(u)(x)〉 for all u ≤ U .
Because of the linearity of the last FC layer, the two ap-
proaches are equivalent. We use the first approach in this
work. A diagram in Figure 3 illustrates the process of fea-
ture projection and averaging on the message space.

3.2. Losses

For the AU prediction task, the inference loss is the bi-
nary cross entropy loss. Given the input x, the AU predic-
tion is denoted by ŷAU . The ground truth label for AU is
denoted by yAU . The inference loss of the AU task is given
by:

LAU (ŷAU , yAU ) = − 1

U

U∑

i

PAU
i yAU

i log(σ(ŷAU
i ))+

(1− yAU
i ) log(1− σ(ŷAU

i )),

(4)

where PAU
i is the weight of each AU for data balancing.

It is computed from the training set data distribution. PAU
i

equals to the number of negative samples divided by the
number of positive samples for each AU. σ(·) represents
the sigmoidal function.

For facial expression (EXPR) classification, we use a
cross-entropy loss as the inference loss shown in Equa-
tion 5.

LEXPR(ŷEXPR, yEXPR) =

−
C∑

i

PEXPR
i yEXPR

i log(ρi(ŷ
EXPR)),

(5)

where ρi(ŷ
EXPR) =

exp(yEXPR
i )

∑
exp(yEXPR

i )
denotes the Soft-max

function. PEXPR
i is the re-weighting factor, which is com-

puted from the training set data distribution.
Finally, for valence and arousal (VA) prediction, we use

the negative Concordance Correlation Coefficient (CCC) as
the inference loss.

LV A(ŷV A, yV A) = 1− CCCV + 1− CCCA. (6)

To learn multiple tasks, we use a unweighted sum to
combine different inference losses:

L = LAU + LEXPR + LV A. (7)

4. Experiments

4.1. Datasets

The datasets provided by the ABAW3 challenge can be
divided into two categories: the uni-task video datasets and
the multi-task learning (MTL) static datasets.

The videos of the uni-task datasets are the same as the
videos from the Aff-wild2 database [14], including the AU
subset, the EXPR subset, and the VA subset. Each sub-
set is annotated with one corresponding emotion descriptor.
What is different is that, in addition to 7 facial expressions
(six basic emotions plus neutral) annotated in the Aff-wild2
EXPR subset, the ABAW3 challenge organizers annotated
another facial expression: ”other”. The category ”other” in-
dicates facial expressions which cannot be classified into six
basic emotions, nor the neutral category. For example, the
”bored” expression shown in Figure 2 is one of the ”other”
expressions. In total, there are 548 videos of around 2.7
million frames in the uni-task video datasets.

The MTL static dataset contains only a subset of frames
from the Aff-wild2 dataset. Each frame is labeled with com-
plete annotations: 8 facial expressions, 12 action units, va-
lence, and arousal. In total, there are around 175, 000 im-
ages in the MTL static dataset.

In our experiments, we did not use the MTL static dataset
which has complete emotion annotations. We only used
the video data from the three uni-task datasets. There
are mainly two reasons. Firstly, we notice that the MTL
static dataset has overlapped videos with the three uni-task
datasets in both the training and the validation sets. It is
problematic to use the three uni-task datasets and the MTL
static dataset simultaneously because of the data leakage
problem. Secondly, our approach is proposed to alleviate
the problem of lack of complete annotations by regulariz-
ing feature learning with prior knowledge. It is very flex-
ible about incomplete annotations. Therefore, we ignored
the MTL static dataset and only used the uni-task datasets
for training and validation. However, for the performance
evaluation on the test set , we submitted our predictions on
the test set of the MTL static dataset. This is part of the
competition requirements. Besides, we aim to evaluate the
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Model F1-AU F1-EXPR CCC-V CCC-A
Single-
task
Baseline

0.39 0.23 0.31 0.17

Multi-task
Baseline

0.536 0.489 0.441 0.485

Ours 0.548 0.518 0.447 0.499

Table 1. The comparison between our static model and two base-
line models (also static). The results are evaluated on validation
sets of the AU, EXPR and VA subset from the Aff-wild2 dataset.
F1-AU stands for the unweighted F1 score of 12 action units. F1-
EXPR stands for the macro F1 score of eight facial expressions.
CCC-V stands for the CCC value of valence. CCC-A stands for
the CCC value of arousal.

overall performance with the annotations of three emotion
descriptors given that our model were trained with incom-
plete annotations.

In the uni-task datasets we used, the AU subset con-
tains around 1.8 million frames; the EXPR subset contains
around 0.8 million frames; the VA subset contains around
1.8 million frames. To reduce the training time, we down-
sampled the number of frames in the training set by 8 times,
while keeping the frames in the validation sets intact.

4.2. Training Details

The cropped and aligned faces are provided by the
ABAW3 challenge. We resized the face images to the size
of 299×299×3 in pixels. For image augmentation, we used
random cropping, random horizontal flipping, and random
color jitter. Since the InceptionV3 model were firstly pre-
trained on ImageNet [5] and then finetuned on the training
set, we used the mean and standard deviation of ImageNet
to normalize face images.

The dimension of each ROI embedding is D = 16. To
find the best number of facial regions, we performed a grid
search of U ∈ [12, 17, 27]. 12 is the number of AUs with
annotations in the AU subset. 17 is the number of AUs re-
lated to emotions found in [18]. 27 is the number of major
AUs in the facial action coding system [6]. The three values
were selected given prior knowledge about action units, be-
cause there existed a correspondence between some facial
regions and the action units. From the grid search results,
we found that the multitask performance when U = 17 was
better than the performance when U = 12, but very close
to the performance when U = 27. Therefore, we chose
the number of regions as U = 17. Since U = 17 is larger
than the number of AUs with annotations (i.e., 12), five ROI
embedding vectors are not fed into the Transformer model
to learn the sign vehicle space. They only provide certain
degrees of freedom to message space learning.

The optimizer we used is SGD. The momentum of SGD

is equal to 0.9. The initial learning rate is 10−3. A cosine
annealing learning rate schedule is used to improve conver-
gence. The total number of training iterations is 3 × 105.
The batch size is 72, where for each task, 24 images are
sampled from one of three uni-task datasets in the same
batch.

4.3. Evaluation Metrics

For the AU detection task, we used the averaged F1 score
of 12 AUs to evaluate performance. For discrete emotion
classification, we used the averaged macro F1 score of eight
facial expressions (six basic emotions, neutral and others) as
the evaluation metric. For continuous emotion prediction,
we used CCC as the evaluation metric.

In the multitask learning (MTL) challenge, the perfor-
mance metric is defined as the weighted sum of the evalua-
tion metric of each task.

P =
1

2
(CCCV + CCCA) +

1

8

8∑

i

FEXPRi
1 +

1

12

12∑

j

F
AUj

1 . (8)

5. Results

In this section, we introduce the evaluation results of two
recognizers: a static model, which is the model introduced
in Section 3, and a temporal model, which applies tempo-
ral smoothing to the features learned by the static approach
in an attempt to exploit the relationship between adjacent
frames.

5.1. Static Approach

We first compared our static approach with two base-
line models. In the ABAW3 challenge, the official base-
line model provided by the challenge organizer is a single-
task CNN model (ResNet50 model for VA; VGG16 model
for EXPR and AU) [16]. They altered the size of the last
FC layer to adapt to the dimension of emotion descriptors.
We also compared our SMM-EmotionNet with a multi-task
baseline model: an InceptionV3 feature extractor followed
by parallel branches of FC layers corresponding to different
tasks. In each branch, the sizes of consecutive FC layers are:
768× 16 → 16×C. C is the dimension of the correspond-
ing emotion descriptor. This multi-task baseline model is
trained with the same hyper-parameters (e.g., batch size) as
our proposed model.

The evaluation results are shown in Table 1. Compared
with the single-task and multitask baseline models, our
model shows superior performance on every task. Since
the architecture of the feature extractor and training hyper-
parameters are the same in our model and the multi-task
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Fold ID F1-AU F1-EXPR CCC-VA (Averaged)
1 0.463 0.428 0.542
2 0.586 0.552 0.577
3 0.576 0.450 0.558

Table 2. The three-fold cross-validation results given the optimal
μ on each of the validation sets in the AU, EXPR and VA subset.
CCC-VA stands for averaged CCC values of valence and arousal.

Model Val sets (uni-task) Test set (MTL)
ours (static) 1.539 1.104

ours (temporal) 1.664 1.113

IMLAB - 0.953
HSE-NN - 0.809
NFVH 1.480 0.675

Table 3. The multitask evaluation metric (Equation 8) on the val-
idation sets of uni-task subsets and the test set of the MTL static
dataset.

baseline, the advantage of our model seems to result from
our use of distinct architectures for the sign vehicle space
and the message space.

5.2. Temporal Smoothing

We considered a simple temporal smoothing method to
filter high-frequency noise in a sequence of feature vectors.
We did not re-train our static model, but used it to extract
features for the sign vehicles or the emotional messages.
After temporal smoothing, these features were fed into the
last FC layer for classification or regression.

For the feature vector εt = M (u)(xt) or εt = S(u)(xt)
at the time step t, we smoothed it with the this function:

Λt =
1

1 + μ
(εt + μΛt−1). (9)

Λt is the feature vector at the time step t after smooth-
ing. μ is a hyper-parameter which determines the smooth-
ness. Larger μ indicates higher dependency of the current
variable on its previous values.

We found the best μ by grid search with three-fold cross-
validation on the validation sets of the uni-task datasets.
The search region is μ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Given the cross-validation results, we chose the optimal μ
for the AU task to be 7, and the optimal μ for EXPR and
VA to be 9. The cross-validation results given the optimal
values of μ are shown in Table 2.

5.3. Multi-task Learning Performance

We submitted our model to the MTL (Multitask Learn-
ing) challenge track.

Using the Equation 8 as the evaluation metric, we eval-
uated the performance of our static model and temporal

model on the validation sets of the three uni-task datasets
and the test set of the MTL static dataset. The results are
shown in Table 3. The temporal smoothing method slightly
increased overall multitask performance compared with the
static approach. The improvement was around 0.8% on the
test set of the MTL static dataset.

We also compared our models with the methods submit-
ted by other teams in the same challenge, which we refer to
by team names:

• IMLAB. Jeong et al. [8] proposed an audio-visual
model with two streams to extract visual features from
facial image sequences and audio features from audio
signals. They then concatenated the visual and audio
features and fed them to task-specific FC layers for
emotion prediction.

• HSE-NN. Savchenko et al. [20] proposed a multitask
model to predict facial attributes, such as age and gen-
der, in addition to the emotions. The architecture they
used was a CNN feature extractor followed by several
branches for different tasks.

• Netease Fuxi Virtual Human (NFVH). Zhang et
al. [26] proposed a multi-modal framework consist-
ing of four streams: one vision stream extracts fea-
tures from single visual frames, while the other three
streams extract features from input sequences, i.e., the
visual frame sequences, the audio signals, and the
word embeddings of transcripts.

Table 3 compares our and other teams’ approaches. Al-
though we proposed a uni-modal approach, it outperformed
all of the multi-modal approaches. The performance of
multi-modal approaches’ might have been affected by the
qualities of the modalities. For example, facial images may
be occluded. Audio signals may consist of background
noise. The transcripts generated by out-of-the-box speech
recognition models may contain errors. Previous papers on
multi-modal emotion prediction [3,4] have shown the visual
modality contributed the most to the performance of emo-
tion prediction, while the audio and text modalities provided
only supplementary information.

6. Ablation Study

This ablation study seeks to evaluate the extent to which
using a shared space for EXPR and VA regularizes the
learning of both emotion descriptors when using partially
annotated datasets, i.e., the annotations of one emotion de-
scriptor are absent. We compare our approach with a variant
model that uses separate metric spaces for EXPR and VA,
the message-space-separated (MSS) model.

Figure 4 shows the message space learning of the MSS
model. Unlike the SMM-EmotionNet, the MSS model
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Model F1-AU F1-EXPR CCC-V CCC-A
MSS 0.562 0.487 0.439 0.442
SMM 0.548 0.518 0.447 0.499

Table 4. The comparison between our SMM-EmotionNet with
the variant model, MSS model, on the validation sets of uni-task
datasets.

learns two separate spaces for EXPR and VA. In particu-
lar, the transformation modules (matrices) are not shared by
EXPR and VA.

…
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fc
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…

Transformation

III. Message Space
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Transformation

fc

Transformation
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Figure 4. The message space learning of the message-space-
separated (MSS) model.

We compared the SMM-EmotionNet with the MSS
model on the validation sets of the uni-task datasets. The
results are shown in Table 4. Using separate spaces for
EXPR and VA degraded the performance metrics of EXPR
and VA. The EXPR F1 was reduced by around 6%. The
average CCC of valence and arousal was reduced by 7.5%.
Although the AU F1 score was better for the MSS model,
the overall performance evaluated using Equation 8 was re-
duced by around 4%. This suggests that without the mutual
influence between EXPR and VA ensured by constraining
to the shared space, the prior knowledge that EXPR and VA
are closely related cannot be fully utilized.

7. Visualization

In this section, we visualized the features learned by our
static model to verify whether they were consistent with
prior knowledge. We used the validation sets of the three
uni-task datasets for visualization.

Using t-SNE [21] to reduce the feature dimension to 2,
we plot the distribution of the learned features in the sign
vehicle space in Figure 5. There are 12 AUs, correspond-
ing to the 12 spaces. The F1 score of each AU is given in
its title. Some AUs’ F1 scores are relatively low, for exam-
ple, AU23 and AU24. We think due to the rare occurrence

of these AUs in the training set, our model failed to learn
very discriminative features for them. For other AUs, the
differences between samples with AU presence and sam-
ples with AU absence are mostly angular differences. This
is because we use a single FC layer for AU prediction. The
predicted AU probability mainly depends on the inner prod-
uct between the sign vehicle feature and the weight vector
of the corresponding AU. Although the bias term will also
affect the output, it shifts decision boundary for every sam-
ple regardless of the input.

Figure 6 shows the learned features in the message space
after dimension reduction. Figure 6 (a) shows message
space features, where the ground truth labels of eight facial
expressions indicated by different colors. For each facial
expression, we draw the covariance ellipse estimated as-
suming the features follow Gaussian class conditional den-
sities to better visualize their distribution. The distribu-
tions of some facial expressions, e.g., neutral, happiness,
surprise, and fear, are consistent with Russell’s circumplex
model in Figure 6 (b). Sadness, anger, and disgust, although
they are close to each other, they do not follow the exact re-
lations depicted in Russell’s circumplex model. The fea-
tures of the facial expression, ”other”, are scattered over
the plane, which indicates the learned features are not dis-
criminative enough for the ”other” category. This also ex-
plains the classification performance of the ”other” expres-
sion. Treating each facial expression as a binary classifi-
cation task, we notice that the F1 score of the ”other” ex-
pression is only 0.32, while the F1 score of the ”neutral”
expression is 0.68.

Figures 6 (c) and (d) visualize the features of the mes-
sage space with respect to valence/arousal scores. Lighter
color indicates higher value. To find the the direction in
which valence/arousal increases most quickly, we fitted a
bi-variate linear model to the 2-dimensional features re-
duced by t-SNE. We show plot gradient of this linear model
with an arrow. The length of the arrow indicates the gradient
magnitude. Since Figures 6 (c) and (d) are generated from
the same data, the directions of their arrows can be directly
compared. Although Russell’s circumplex model assumes
that the arousal and valence dimensions are orthogonal, our
feature visualization shows that they are not orthogonal, but
correlated. This is consistent with the symmetric V-shaped
relation between valence and arousal, which has been found
in multiple cultures, such as Canada, Korea and Spain [17].

8. Conclusion

In this paper, we proposed a novel model for multiple
emotion descriptors recognition and feature learning. We
designed distinct architectures for learning the feature space
of sign vehicles (e.g., facial action units) and learning the
feature space of emotional messages (e.g., facial expres-
sions, valence, and arousal), exploiting knowledge about
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Figure 5. The t-SNE visualization of features on the sign vehicle space. The presence (1) and absence (0) of each AU are indicated by
different colors.

(a) (b) (c) (d)

Figure 6. The t-SNE visualization of features on the message space. (a) The eight facial expressions. For each facial expression, we draw
the ellipse of their co-variance matrix. (b) Russell’s circumplex model with colors indicating different facial expressions. (c) Arousal.
Lighter color indicates higher arousal. (d) Valence. Lighter color indicates higher valence. Arrow indicates the ascent direction of a linear
fit. Different colors indicate the values of ground truth labels, not predictions.

their properties gleaned from related psychological studies.
Our ablation study supports the advantage of sharing the
feature space for facial expressions, valence and arousal,
which corresponds to Russell’s circumplex model.
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