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Abstract

This paper presents our contribution to the 3rd Affective Be-
havior Analysis in-the-Wild (ABAW) challenge. Exploiting
the complementarity among multimodal data streams is of
vital importance to recognise dimensional affect from in-
the-wild audiovisual data, as the contribution affect-wise
of the involved modalities might change over time. Recur-
rence and attention are two of the most widely used mod-
elling mechanisms in the literature for capturing the tempo-
ral dependencies of audiovisual data sequences. To clearly
understand the performance differences between recurrent
and attention models in audiovisual affect recognition, we
present a comprehensive evaluation of fusion models based
on LSTM-RNNs, self-attention, and cross-modal attention,
trained for valence and arousal estimation. Particularly,
we study the impact of some key design choices: the mod-
elling complexity of CNN backbones that provide features
to temporal models, with and without end-to-end learning.
We train the audiovisual affect recognition models on the
in-the-wild Aff-wild2 corpus by systematically tuning the
hyper-parameters involved in the network architecture de-
sign and training optimisation. Our extensive evaluation
of the audiovisual fusion models indicate that under var-
ious experimental settings, compared to RNNs, attention
models may not necessarily be the optimal choice for time-
continuous multimodal fusion for emotion recognition.

1. Introduction

The growing market penetration of smart devices is radi-
cally increasing the number of scenarios where we interact
with machines. Nowadays, such interactions take place in
a wide range of environments, including the workplace, at

home, or even inside our vehicles. If technology is going
to accompany us in all aspect of our lives, powering ma-
chines with affective capabilities is a requirement to human-
ise technology towards a more natural Human-Computer
Interaction (HCI). Creating more human-like technology is
one of the objectives of Affective Computing [31].

This paper focuses on the automatic recognition of va-
lence and arousal with the aim to develop Emotional Ar-
tificial Intelligence solutions that could allow machines to
adapt to the users’ affective states. For instance, in the ve-
hicle environment, if the car detects that the driver has been
showing high levels of arousal and negative levels of va-
lence, it could interpret this as anger. Alternatively, low
levels of arousal and negative valence may indicate sad-
ness or fatigue [9]. In these cases, the car could suggest
playing calm music or even pulling over to take some rest
for the safety of the driver and others. Mood improvement
and relaxation systems already exist on the market for some
premium brands, but knowing when to suggest them and
adapting them based on the detected emotions could greatly
enhance the user experience [1].

However, automatically detecting emotions and moods
in a setting as described above, or any scenario in an un-
controlled environment, remains an open problem. It is
commonly referred to as emotion recognition in-the-wild,
and presents several challenges: Data is often noisy, for
the visual modality, a person’s face may be partially oc-
cluded, or there may be rapid changes in the illumination.
For the acoustic modality, a person’ voice may be less in-
telligible because of background noise. Another issue lies
in cross-cultural emotion recognition [34] i.e., automatic
affect recognition systems needing to perform reliably for
people of very diverse backgrounds and origins, who may
express their feelings differently. In order to tackle this dif-
ficult problem, various methods have been proposed. These
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frequently involve fusing multiple modalities in order to
better judge the emotional state from complementary infor-
mation [32]. Another common strategy is using temporal
information, since the emotional state fluctuates over time.

For the purpose of processing time series, Recurrent
Neural Networks (RNNs) continue to be popular. RNNs
look at each element of the input sequentially and update
their hidden states. Recent works in emotion recognition
have also made use of networks based on self-attention and
cross-modal attention [4, 14]. While self-attention finds re-
lations between the elements of one sequence, cross-modal
attention relates two sequences from different modalities to
each other [41]. Compared to RNNs, attention-based net-
work architectures have the advantage of allowing parallel
computations. However, adding recurrence may still im-
prove attention-based networks [14].

Although recurrent and attention models have been
widely applied to the multimodal fusion for affect recog-
nition and sentiment analysis [2, 28, 38, 39], it is not very
clear how the quality of the input feature embeddings af-
fects performance when modelling complex interactions be-
tween the modalities, particularly in end-to-end learning ap-
proaches. Specifically, to the best of our knowledge, not
much attention is paid to comprehensively analysing the
performance of RNNs and attention models based on the
underlying CNN backbones’ characteristics. To this end,
we consider two commonly used CNN backbone models
of two different complexity levels for extracting face image
features: FaceNet, based on the InceptionResNetV1 archi-
tecture, and MobileFaceNet, based on the MobileNetV2 ar-
chitecture. Using the visual features extracted using these
two CNN backbones and systematically tuning the hyper-
parameters of network design and optimisation, we compre-
hensively evaluate the performance of LSTM-RNNs, self-
attention and cross-modal attention models on the task of
audiovisual affect recognition.

Herein, we present this comparative analysis of RNNs,
self-attention and cross-modal attention as part of our con-
tribution to the 3rd Affective Behavior in-the-Wild (ABAW)
challenge. While similar comparisons have been per-
formed, we focus our analysis specifically on the task of
continuous emotion recognition in the wild. The Affwild2
dataset used in the challenge is the largest in-the-wild cor-
pus annotated in terms of valence and arousal [20]. Its data
presents many of the difficulties listed above, including a
high diversity of subjects, varying illumination, and occlu-
sions, and frequently noisy audio. We believe that it is ben-
eficial to benchmark the algorithms on such a dataset. Our
main contributions are:

1. We investigate the impact of CNN backbones with
different complexities on the performance of LSTM-
RNNs for audiovisual affect recognition in the wild,
and show the effectiveness of end-to-end-learning.

2. We contrast the performance of LSTM-RNNs with
self-attention and cross-modal attention and show that
recurrent models can outperform attention models in
combination with low-complexity CNN backbones.

The rest of the paper is structured as follows: We present
our methodology in Sec. 3 and describe our experimental
settings and results in Sec. 4. A discussion of the results
follows in Sec. 5, and we suggest future works in Sec. 6.
Finally, Sec. 7 concludes this paper.

2. Related Work
Recurrence vs Attention for Sequence Modelling. To
model the underlying temporal dynamics embedded in the
time-continuous data, recurrent [13] and attention [43]
mechanisms have been widely used. While the recurrence
models rely on gated sequential propagation of temporal dy-
namics encoded into a latent state, the attention models by-
pass the sequential propagation of information and directly
attend to the past inputs. Thus, the attention models can
capture long-term temporal contingencies by circumvent-
ing the problem of vanishing gradients. Although LSTM-
RNNs [13] are designed to capture the long-term dependen-
cies by controlling the information flow, they still fall short
in practice due to their fixed dimensional latent state to hold
the past information, unlike in the attention models.

Building on the success of attention mechanism [43]
in sequence data modelling in recent years, cross-modal
attention-based audiovisual fusion has been widely applied
to the emotion recognition tasks [10, 23, 33, 46, 47]. How-
ever, this advantage with attention models comes at the cost
of poor (quadratic) scalability with sequence length, which
is not the case with RNNs. Furthermore, attention models
can operate only within a fixed temporal context window
whereas the RNNs can handle unbounded context [11].

Some recent works [15, 30] made systematic efforts to
understand the trade-offs between the recurrence and atten-
tion mechanisms. However, in the case of time-continuous
multimodal fusion, which requires modelling complex in-
teractions among different modalities, not much is known
about how their performance is influenced by some key de-
sign choices; for instance, the CNN backbone modelling
complexity and the resultant input features quality. This ob-
servation motivates our attempt to study the impact of CNN
backbones on the performance of LSTMs, self-attention,
and cross-modal attention models, by systematically tuning
the hyper-parameters involved in the network architecture
design and training optimisation.
In-The-Wild Audiovisual Affect Recognition. The first
affect in the wild challenge based on the Aff-wild dataset
was introduced at CVPR 2017 [44]. In [19], the dataset and
the challenge are described. Aff-wild contains 298 videos
sourced from YouTube. Shown in it are subjects reacting
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to a variety of stimuli; e.g., film trailers. Subsequently, the
corpus was extended with additional videos, and renamed
to Aff-wild2 dataset [20]. Aff-wild2 is composed of 548
videos, with a total of about 2, 78 M frames. The total num-
ber of subjects is 455, of whom 277 are male. The dataset
is annotated with three sets of labels: continuous affect (va-
lence and arousal), basic expressions (six emotions and neu-
tral), and Facial Action Units (FAUs). 545 videos have an-
notations for valence and arousal.

The first ABAW challenge was held as a workshop at
FG2020 [17]. It consisted of three sub-challenges for es-
timating valence-arousal (VA track), classifying facial ex-
pressions (EXPR track), and detecting 8 FAUs (AU track).
The winning team of the VA track [6] relied on a multi-task
learning approach. To deal with the problem of incomplete
labels in Aff-wild2 data used for the first ABAW compe-
tition, i.e. not all samples being annotated for each task,
Deng et al. [6] proposed a teacher-student framework. A
deep ensemble model was trained as the teacher, predicting
the missing labels to guide the student.

In 2021, the second ABAW challenge took place in con-
junction with ICCV 2021 [22]. Compared to the previous
year, the database had been extended with more annota-
tions. The challenge tracks were identical, but the AU track
now included 12 FAUs. The winner of the VA track [7]
was the same team as in the previous year, again utilising
a multi-task teacher-student framework. The approach also
included the prediction uncertainty of an ensemble of stu-
dent models to further improve the performance.

Several multi-task learning models [6, 8, 24] effectively
leveraged the availability of Aff-wild2 data jointly anno-
tated with the labels of dimensional affect, categorical ex-
pressions, and FAUs. A holistic multi-task, multi-domain
network for facial emotion analysis named FaceBehavior-
Net was developed on Aff-wild2 and validated in a cross-
corpus setting in [18, 19, 21].

3. Methodology

Since we want to compare fusion methods for time-
continuous emotion recognition, our method is based on
deep neural networks operating on sequences of features
extracted from the visual and audio modalities. We use the
cropped and aligned faces from the videos as visual inputs
and fixed-length clips as audio inputs. Our approach is il-
lustrated in Fig. 1.

3.1. Visual Features

Visual features are extracted with the help of 2D-CNNs. We
use pre-trained networks trained on facial recognition tasks.
Specifically, we use FaceNet [37], based on the Inception-
Resnetv1 architecture and trained on VGGFace2 [3]. We
also employ MobileFaceNet [5], a lightweight architecture

designed for facial recognition in embedded devices. Mo-
bileFaceNet is built upon residual blocks used in the Mo-
bileNetv2 network [36]. Its usefulness as a feature extrac-
tor for emotion recognition was demonstrated in [7]. Both
CNNs return 512-dimensional feature embeddings. The
FaceNet has approximately 27 M parameters, while the Mo-
bileFaceNet has 0.99 M parameters.

3.2. Audio Features

For audio feature extraction, we choose a 1D CNN network
based on the architecture proposed by Zhao et al. [48]. The
CNN encoder has 4 local feature learning blocks consist-
ing of 1D convolutions and maxpooling layers. The kernel
sizes and output channels are [3,3,3,3] and [64, 64, 128,
128]. The choice of this architecture is motivated by its low
parameter count (about 88 k) and proven effectiveness for
speech emotion recognition on a number of corpora.

We use the RECOLA dataset [35], a corpus of spon-
taneous affective interactions between French speakers, to
pre-train the audio network. For this purpose, we com-
bine the 1D-CNN with a 2-layer LSTM and a fully con-
nected output layer and train the model end-to-end using
the End2You toolkit 1 [42]. Then, the LSTM and output
layers were removed to obtain the convolutional feature ex-
tractor. We then added a global average pooling layer at the
end so the network returns 128-dimensional embeddings.

3.3. Sequence Modelling

Recurrence Models (RNN) are widely used for sequen-
tial data modelling, whose fundamental strength lies in
their ability to learn the underlying temporal context in
the form of a hidden state; i.e., ht = f(ht−1, ..). This
approach based on maintaining the hidden states is a nat-
ural solution to model the sequential data that is irregu-
larly sampled from an underlying time-continuous series
phenomenon [11] such as dimensional affect recognition.
However, the limitations of recurrence models in terms of
capturing cross-modal interactions in multimodal temporal
data, which is critical for audiovisual emotion recognition,
is not very clear. In this work, we consider the canonical
Long-Short Term Memory (LSTM) RNNs [13], using both
unidirectional and bidirectional models, for a comprehen-
sive evaluation on audiovisual affect estimation.
Self-Attention (SA). Second, we use networks based on
the Transformer architecture [43]. Specifically, we use
multi-headed scaled dot-product attention blocks with feed-
forward networks as employed in the transformer encoder.
The scaled dot-product attention is defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V. (1)

1https://github.com/end2you/end2you
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Figure 1. Our proposed approach. We use pre-trained CNNs as feature extractors from sequences of faces, and raw audio clips (left). Then,
we process them with three different architectures: Recurrent Neural Networks with LSTM cells (RNN, top), Self-Attention (SA, middle),
and Cross-Modal Attention (CMA, bottom). Each model predicts a sequence of scores for valence and arousal for each time step of the
input (right).

Multi-head attention linearly projects the query, key and
value pairs into different sub-spaces and performs attention
on them in parallel, before recombining and projecting into
the output dimension. It is defined as:

MHA(Q,K, V ) = Concat (head1, ..., headn)WO,

where headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
.

(2)

In order to fuse modalities within our models, we either
use a simple concatenation of our feature embeddings, or a
cross-modal fusion architecture.
Cross-Modal Attention (CMA) Fusion is proposed in Tsai
et al. [41] to implement the Multimodal Transformer net-
work in which pair-wise attention modelling across differ-
ent modalities is performed. On the task of discrete emo-
tion recognition from multimodal signals, CMA demon-
strates superior generalisation performance compared to
LSTM-RNNs [41]. However, when it comes to the contin-
uous emotion recognition from multimodal data, the per-
formance gains that CMA can achieve over the canoni-
cal RNNs is unclear. To delineate the trade-offs between
the CMA and the other aforementioned sequence models,
we herein evaluate different CMA-based audiovisual fusion
models. We implement the audiovisual CMA models by tai-

loring the multimodal transformer architecture2 which was
originally designed for text, audio, and visual modalities.

Our cross-modal architecture is based on the cross-
modal attention blocks introduced by [41]. In the self-
attention mechanism used in the transformer encoder, Q, K,
and V are identical. In the cross-modal attention however,
the queries and the key-value pairs come from two different
modalities, where Q is denoted as the target and K,V as the
source, respectively. It is similar to the transformer decoder,
but it does not involve self-attention. At each layer, the tar-
get modality is reinforced with the low-level information of
the source modality [41].

When employing concatenation of feature vectors, we
pass the result through either a stack of recurrent layers or
a self-attention stack. When using cross-modal fusion, we
pass the features through two cross-modal blocks in paral-
lel, one of them using the audio features to attend to the
visual features, and the other vice-versa. We then concate-
nate the outputs of the cross-modal blocks before passing
them to a self-attention stack. We use fully connected and
1D convolutional layers to reduce the dimensionality of the
features returned by our extractor networks before passing
them to our sequence models. When using 1D-CNNs with
kernel size larger than 1, this also serves to encode the lo-
cal temporal context. For the transformer networks, we add

2https://github.com/yaohungt/Multimodal-Transformer
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additional position embedding layers with fixed sinusoidal
patterns to help them distinguish the sequence order [43].

3.4. Loss Functions

We use fully connected layers to return the outputs of our
models. Each model has two output heads. The first head
has size 2 and is used for prediction of valence and arousal
scores.

We use two losses for the regression head. The first is
based on the Concordance Correlation Coefficient (CCC)
[26], which is defined as in Eq. (3). It measures the corre-
lation between two sequences and ranges between -1 and 1,
where -1 means perfect anti-correlation, 0 means no corre-
lation, and 1 means perfect correlation. The loss is calcu-
lated as 1 − CCC for both valence and arousal, then av-
eraged. We also compute the Mean Square Error (MSE),
which is defined as Eq. (4).

CCC(x, y) =
2 ∗ cov(x, y)

σ2
x + σ2

y + (µx − µy)
2 ,

where cov(x, y) =
∑

(x− µx) ∗ (y − µy) .

(3)

MSE(x, y) =
∑

(x− y)
2
. (4)

In addition to regressing the scores, we also add a clas-
sification head that predicts the category the scores belong
to. Jointly estimating continuous and categorical emotions
from faces has been shown to be effective for facial af-
fect analysis in the wild [40]. While the Affwild2 dataset
is annotated in terms of both continuous and categorical
emotions, the rules of the ABAW challenge do not allow
using multiple annotations for the valence-arousal track.
Therefore, we discretise the labels, by dividing the two-
dimensional affect space into 24 sections. These are derived
by plotting valence and arousal in polar coordinates, with 3
equidistant radial subdivisions and 8 angular subdivisions.

The Cross-entropy loss is used as the loss function for
the classification head. Since the Affwild2 dataset is imbal-
anced towards positive arousal and valence, we weigh the
logits to emphasise minority classes.

Our total loss is thus composed of three terms. We add
weights to the MSE and cross-entropy losses to adjust their
contribution, leading to our loss function Eq. (5)

L = Lccc + λmse ∗ Lmse + λce ∗ Lce. (5)

4. Experiments and Results

We describe our experimental settings and the obtained re-
sults on the validation set of the challenge.

4.1. Dataset

We use the subset of Affwild2 annotated for the Valence-
Arousal (VA) Estimation task. The training set consists of
341 videos, the validation set consists of 71 videos and
the test set consists of 152 videos. Several videos have
more than one person in them, those videos are annotated
separately for each person and are considered like multi-
ple videos. Frames are annotated in terms of valence and
arousal belonging to the range [-1, 1].

We use the cropped and aligned faces from the videos
provided by the challenge organisers. After discarding
frames marked as invalid, we create sequences from the re-
mainder. The frame rate of the Affwild2 dataset is 30 fps for
the majority of videos. Thus, consecutive frames are very
similar. In order to provide our model with more temporal
information, one option would be to increase the sequence
length, at the cost of additional computational resources.
We choose instead an approach similar to [24] and use di-
lated sampling; i.e., we select only 1 in N frames. With
sequence length T , this gives a temporal context t of:

t =
N

30
∗ T. (6)

In order not to reduce the size of the training set, we also
apply an interleaved sampling method to select the remain-
ing frames. We do not apply this dilated sampling method
to the validation set. While this introduces some discrep-
ancy with the training, it maintains equal conditions to the
test set.

We use a fixed sequence length of 16 frames for our ex-
periments since we hypothesise that enough information is
contained in this time span, and to limit the memory cost
of our models. Audio clips are extracted at a fixed window
length of 0.5 s, centred at the frame timestamps. We convert
the audio of the entire dataset to 16 kHz mono, 16 bit PCM.
The images are resized to the shape required by the CNN
feature extractor. We use randomly affine transformations
and changes in saturation, brightness, and contrast as data
augmentation on the images. We also apply Gaussian noise
to the audio frames.

4.2. Training

We implement our models using the PyTorch framework
and train them on servers with Nvidia RTX3090 and A40
GPUs. Per model training, we allocate 40 CPUs and 40 GB
RAM in order to accelerate the loading of batches. The
batch size is 64. Models are trained using the AdamW opti-
miser [27]. We apply cosine annealing with warm restarts as
learning rate scheduling, setting it to restart after 200 steps.

In order to find the best configurations for our mod-
els, we perform extensive hyperparameter optimisation. We
train our models in groups, choosing first the feature extrac-
tors and the general architecture (recurrent or transformer),
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Hyper-parameter Value Range

General parameters
nlayers [1, 5]
dmodel 64, 128, 256
activation GELU, SELU
dropout [0.1, 0.6]
learning rate [10−5, 10−2]
weight decay [10−3, 10−1]
λmse [0.0, 1.0]
λce [0.0, 1.0]

Attention Models
dfeedforward 64, 128, 256
nheads 2, 4, 8

Cross-modal Attention
nV−→A
layers [1, 5]

nA−→V
layers [1, 5]

Recurrent Models
Context aggregation {unidirectional, bidirectional}
nlayers [1, 5]
dhidden 64, 128, 256

Table 1. Search space of hyper-parameters used for training.

then varying the architecture’s parameters, as well as the
learning rate for our optimiser and the contributions of our
losses. The list of hyperparameters used is shown in Tab. 1.

Since the potential number of hyperparameter combina-
tions is very large, making a simple grid search inefficient,
we use a tuning algorithm instead to cover a larger number
of choices. For this, we choose Ray Tune 3, a flexible tun-
ing toolkit that supports parallel training on multiple GPUs.
We use the ASHA scheduling algorithm [25] to quickly
discover suitable configurations and stop trials early if they
are not performing well.

Our preliminary experiments showed that adding the
MSE loss term led to more stable training than using CCC
loss alone. Adding the cross-entropy loss on the discretised
labels further improved performance, which agrees with the
findings of [40].

In the first round of experiments, we freeze the layer
weights of the feature extraction networks to limit the num-
ber of trainable parameters. Then, we test end-to-end learn-
ing with the full set of parameters. For these experiments,
we restrict the choice of the visual encoder network to Mo-
bileFaceNet to avoid overfitting.

3https://www.ray.io/ray-tune

Method Visual CNN Vale. Arou. Avg.

Baseline [16] ResNet50 0.310 0.170 0.240

Recurrent Models (RNNs)
Aud-RNN - 0.094 0.233 0.163

Vis-RNN Inception 0.277 0.188 0.233

Vis-RNN Mobile 0.285 0.357 0.321

AV-RNN Inception 0.339 0.486 0.413
AV-RNN Mobile 0.319 0.436 0.378

Self-Attention (SA) Models
Aud-SA - 0.076 0.317 0.197

Vis-SA Inception 0.318 0.203 0.261

Vis-SA Mobile 0.324 0.414 0.369

AV-SA Inception 0.344 0.404 0.374

AV-SA Mobile 0.248 0.529 0.389

Cross-Modal Attention (CMA) Models
AV-CMA Inception 0.393 0.363 0.378

AV-CMA Mobile 0.324 0.460 0.392

Table 2. Validation results in CCC ↑ (valence, arousal and aver-
age), evaluated on the validation set of the Aff-wild2 corpus as
partitioned in the ABAW 2022 challenge for unimodal and multi-
modal models with frozen feature extractors. Results are given for
each type of architecture investigated - RNNs, SA, and CMA.

4.3. Validation Results

The validation results for preliminary experiments on mod-
els with frozen feature extraction networks are presented
in Tab. 2. We denote the three types of architectures
employed as Audiovisual-[RNN, SA, CMA] for recurrent,
self-attention, and cross-modal attention, respectively. The
second column specifies the feature extraction network used
for visual information, as Inception or Mobile for Inception-
Resnetv1 and MobileFaceNet, respectively. For compari-
son, we also state the results of unimodal models trained
with self-attention and RNN.

As Tab. 2 shows, our audiovisual models outperform the
challenge baseline by a wide margin. We report the val-
idation results of the best models per architecture, trained
end-to-end, in Tab. 3. All models share the same feature en-
coders – i.e., MobileFaceNet and the 1D CNN pre-trained
on RECOLA. The hyperparameter configurations of the
best models are given in Tab. 4. In addition, we report the
number of parameters for the best performing audiovisual
models in Tab. 5, comparing their computational complex-
ity.
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Method Valence Arousal Avg.

E2E-AV-RNN 0.361 0.551 0.456
E2E-AV-SA 0.380 0.520 0.450

E2E-AV-CMA 0.388 0.492 0.440

Table 3. Validation results in CCC ↑, evaluated on the validation
set of the Aff-wild2 corpus as partitioned in the ABAW 2022 chal-
lenge. The reported results are for the best multimodal models
trained end-to-end with MobileFaceNet as visual encoder and 1D
CNN pre-trained on RECOLA as audio encoder, and using RNN,
SA and CMA for sequence modelling.

Hyper-Parameter E2E Models
AV-RNN AV-SA AV-CMA

nlayers 1 3 4
dmodel 64 64 256
activation SELU GELU GELU
dropout 0.5 0.5 0.6
learning rate 0.0002 0.002 0.0001
weight decay 0.023 0.008 0.06
λmse 0.84 0.78 0.18
λce 0.88 0.27 0.76
dfeedforward - 256 256
nheads - 8 4
nV−→A
layers - - 3

nA−→V
layers - - 1

Context aggregation uni - -
dhidden 64 - -

Table 4. Hyperparameter configurations for the best performing
models. The models are trained end-to-end with RNNs, SA, and
CMA networks, respectively.

4.4. Test results

The results of our end-to-end models on the test set are
given in Tab. 6. We also report the performance of an en-
semble model obtained by averaging the individual model
predictions, which achieved 5th place on the VA track of the
ABAW 2022 challenge.

5. Discussion

We judge performance by the mean CCC for valence and
arousal, which is the metric used in the VA Track of the
ABAW 2022 challenge. We first discuss how the choice of
the visual CNN impacts the RNN models, and the impact
of end-to-end learning. We then compare the performance

Method Visual Encoder Psequence Ptotal

Recurrent Models (RNNs)
AV-RNN Inception 109 K 28.8 M
AV-RNN Mobile 4.4 M 5.4 M
E2E-AV-RNN Mobile 76 K 1.1 M

Self-Attention (SA) Models
AV-SA Inception 765 K 28.1 M
AV-SA Mobile 482 K 1.51 M
E2E-AV-SA Mobile 193 K 1.2 M

Cross-Modal Attention (CMA) Models
AV-CMA Inception 134 K 28.1 M
AV-CMA Mobile 2.1 M 3.1 M
E2E-AV-CMA Mobile 2.4 M 3.4 M

Table 5. Size of our models. We state the total number of pa-
rameters for the audiovisual models, grouped by architecture. For
clarity, we report the number of parameters in the sequence models
and the full number of parameters separately.

Model Valence Arousal Avg.

Baseline [16] 0.180 0.170 0.175

E2E-AV-RNN 0.376 0.380 0.378
E2E-AV-SA 0.396 0.376 0.386
E2E-AV-CMA 0.327 0.359 0.343
Fused 0.418 0.407 0.413

Winner [29] 0.606 0.596 0.601
Runner-Up [45] 0.520 0.602 0.561

Table 6. Test results in terms of CCC↑ evaluated on the test set of
the Aff-wild2 corpus as partitioned in the ABAW 2022 challenge.
Reported are scores for our three models that performed best on
the validation set, as well as for an ensemble obtained by aver-
aging the predictions. Also shown are the scores of the two best
performing teams and the challenge baseline.

of SA and CMA, before contrasting RNNs and attention
models.

5.1. RNN performance

When using RNN as the sequence model, performance de-
creases considerably when replacing the FaceNet feature
encoder with the less complex MobileFaceNet (0.413 to
0.378). At the same time, the number of parameters in the
trainable part of the model increases sharply from 109 k to
4.4 M. We interpret this as the model having difficulties to
learn valence and arousal effectively from the features re-
turned by the smaller CNN.

However, using the lightweight architecture together
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with end-to-end-learning presents a very different picture.
When the feature extractors are fully trainable, the perfor-
mance of the recurrent model is greatly increased, yielding
an average CCC of 0.456. At the same time, the number of
model parameters decreased to merely 76 k in the sequence
part. Examining the hyperparameter configuration of this
winning model shows that it has a single, unidirectional
LSTM layer, with a hidden dimension d = 64. We con-
clude from this that the RNNs seem more efficient in learn-
ing representations of the emotional states if it is trained
end-to-end in combination with shallow CNN encoders.

5.2. Comparing Self-attention and Cross-attention

When comparing the SA models with different visual
CNNs, the model with MobileFaceNet outperforms the one
with FaceNet, with average CCC scores of 0.389 and 0.374,
respectively. At the same time, the size of the attention
model is smaller for the architecture with MobileFaceNet
(482 k parameters compared to 765 k parameters).

For the CMA models, replacing FaceNet with Mobile-
FaceNet also increases performance, from 0.378 to 0.392.
However, the transformer network becomes much larger,
going from 134 k parameters to 2.1 M parameters. These
scores show that the performances of SA and CMA appear
to be similar if the feature extractors are frozen, with CMA
performing slightly better.

When using end-to-end learning, performance increases
significantly for the SA model, with an average validation
CCC of 0.450. At the same time, the number of parameters
in the sequence part of the network shrinks to 193 k. The
CMA model also benefits greatly from end-to-end learning,
achieving a score of 0.440. The number of parameters in
the sequence part of the model is 2.4 M.

Comparing the two best end-to-end models shows that
the SA model outperforms the CMA model, while being
considerably smaller. We hypothesise that the lower com-
plexity of the self-attention model helped discover a more
efficient architecture during end-to-end training.

5.3. Comparing LSTM-RNNs and Attention

We now compare the performances of our RNN models and
attention models directly based on the results on the val-
idation set discussed in the two previous sections. In the
case where the feature extractors are frozen, for the larger
FaceNet, the RNN outperforms the attention models. If
frozen MobileFaceNet is used, the attention models outper-
form RNN. With end-to-end learning, RNN beats both SA
and CMA, while also having fewer parameters.

Evaluation on the test set has shown that SA outperforms
RNN, with scores of 0.386 and 0.378 respectively, while
both outperform CMA (0.343) by a wide margin. When all
models are combined into an ensemble, the average CCC
increases to 0.413.

We conclude from these observations that attention-
based models do not consistently outperform RNNs for
emotion recognition in the wild. When end-to-end learn-
ing is used in combination with shallow CNNs for feature
encoding, RNNs perform on par or marginally better on the
validation set than the SA models investigated in this paper,
and on par or marginally worse on the test set, while being
superior to CMA.

6. Outlook

We compared fusion performance using two CNNs of dif-
ferent sizes as visual feature extractors, while using a small
1D-CNN for extracting audio features. Another study could
focus on choosing different audio networks, e.g. a larger
model like VGGish [12], and comparing the effects.

The models used in this work had limited temporal con-
text due to computational constraints. Future studies could
extend towards longer sequence lengths to investigate how
well the models capture long-term dependencies.

Our analysis focused on the average of valence and
arousal as a metric, in order to judge the overall perfor-
mance of the models. We leave the analysis of trade-offs
between valence and arousal for future work.

7. Conclusion

On a wide range of sequence modelling tasks, attention
models demonstrated superior generalisation performance
than recurrent models in recent years. However, it is worth
noting that the recurrent models have the natural ability to
cope with the challenges in learning from time-continuous
sequence data, by inferring the latent states with unbounded
context, at least in principle. Therefore, in the case of time-
continuous multimodal affect recognition, a recurrent neu-
ral network architecture may still be a natural choice to
model the latent states of face and voice data and their inter-
actions in a time-continuous manner. The extensive evalua-
tion of LSTM-RNNs, self-attention, and cross-modal atten-
tion on in-the-wild audiovisual affect recognition suggests
that attention models may not necessarily be the optimal
choice to perform time-continuous multimodal fusion.
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