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Abstract

To understand the genuine emotions expressed by hu-
mans during social interactions, it is necessary to recognize
the subtle changes on the face (micro-expressions) demon-
strated by an individual. Facial micro-expressions are brief,
rapid, spontaneous gestures and non-voluntary facial mus-
cle movements beneath the skin. Therefore, it is a challeng-
ing task to classify facial micro-expressions. This paper
presents an end-to-end novel three-stream graph attention
network model to capture the subtle changes on the face
and recognize micro-expressions (MEs) by exploiting the
relationship between optical flow magnitude, optical flow
direction, and the node locations features. A facial graph
representational structure is used to extract the spatial and
temporal information using the three frames. The varying
dynamic patch size of optical flow features is used to extract
the local texture information across each landmark point.
The network only utilizes the landmark points location fea-
tures and optical flow information across these points and
generates good results for the classification of MEs. A com-
prehensive evaluation of SAMM and the CASME II datasets
demonstrates the high efficacy, efficiency, and generaliz-
ability of the proposed approach and achieves better results
than the state-of-the-art methods.

1. Introduction

Human beings express their thoughts/emotions in vari-
ous ways: (i) in the form of verbal communication, (ii)
in facial expressions. Human emotions originate from the
amygdala region, and these emotions last between 0.5 and
4.0 seconds. Facial expressions are a non-verbal mode of
communication between people, and they reflect the instant
fluctuations of human emotional states. These expressions
convey the emotional state of an individual to observers,
regardless of their culture, language, and personal back-
ground. Facial expressions are grouped into two categories:

Figure 1. Illustration of why varying dynamic patch size selec-
tion is required. (a) high-intensity expression frame of a video, (b)
high-intensity expression frames with a fixed patch size of 10×10
shown in red color for happy expression, (c) dynamic varying
patch size for happy expression. The smaller patches are mostly
selected on the eyebrow, forehead, eye and nose. The bigger patch
size is selected across mouth region. Different patch sizes are
shown in color: 6x6 - yellow, 8x8 - blue, and 10x10 - red.

facial macro-expressions and facial micro-expressions. Fa-
cial macro-expressions last between 0.6 to 4 seconds. These
expressions have high intensity in expressing emotion, are
prolonged, and are easily recognizable by humans and ma-
chines. It is easy to conceal or fake macro-expressions by
humans. Facial micro-expressions (MEs) are subtle, rapid,
brief, and involuntary facial muscle movements beneath the
skin and last between 0.1 to 0.6 seconds. MEs occur in ev-
eryone and often without their knowledge. Therefore, MEs
show the person’s true emotions [1]. MEs cannot be con-
cealed and faked as they happen in an instant. There are a
variety of applications for micro-expressions in the fields of
lie detection, online learning, ensuring security, and health
care domain for depression recovery, therapies, and more,
and online gaming. Therefore, it is essential to develop a
system to recognize micro-expressions.

Micro-expression recognition has gained importance in
the computer vision community in the last few years. Re-
searchers have been recognizing MEs by using hand-crafted
approaches such as Bi-Weighted Oriented Optical Flow
(Bi-WOOF) [4], Local Binary Pattern with Three Orthog-
onal Planes (LBP-TOP) [45], and 3D Histogram of Ori-
ented Gradient (3DHOG) [21] to extract the textural spatio-
temporal information. But these techniques fail to capture
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the subtle changes on the human face. Recent advances
in the field of deep learning have made it possible for re-
searchers to utilize convolutional neural networks (CNNs)
and graph neural networks (GNNs) to extract the features
for the classification of micro-expressions. These tech-
niques have helped improve the precision of detecting and
micro-expression recognition (MER) task.

The classification of facial micro-expressions is a diffi-
cult task for the following three characteristics of MEs: (i)
subtle and brief behavior, (ii) ephemeral and spontaneous
change in the facial muscle movements, and (iii) short time
duration. Providing sufficient and balanced training data
samples is another problem associated with facial micro-
expression classification and spotting tasks.

To overcome the above significant issues, we propose a
novel approach for end-to-end training of a graph structure
that uses three-stream Graph Attention Network with a self-
attention graph pooling layer by exploiting the relationship
between the landmark points location, optical flow magni-
tude and the optical flow direction. We use three frames
structure connections to exploit the spatio-temporal infor-
mation. The varying patch size across each landmark point
is dynamically selected based on the optical flow informa-
tion. The patch size is selected dynamically to give promi-
nence to the landmark points with higher intensity of facial
muscle movement as shown in Fig. 1. This helps in re-
moving the unwanted noise from the bigger and fixed size
patch features. We choose the frames with high intensity
of facial movements and remove the frames with low inten-
sity of facial muscle movements. To address the unbalanced
data samples issue, we use videos from the other datasets of
the same class to increase the number of samples. Along
with the above data augmentation method, we use various
values of magnification factors in EMM [38] techniques to
increase the number of data samples for classes with smaller
numbers, thus balancing the dataset.

The rest of this paper is organized as follows. In section
2, we introduce the related works and our contributions. In
section 3, we explain the technical approach. In Section
4, we present the qualitative and quantitative experimental
results, including ablation study results. Finally, in section
5, we present conclusions and future work.

2. Related Work and Contributions

2.1. Related Works

In the last decade, micro-expression recognition (MER)
has gained a lot of interest from computer vision re-
searchers. In MER, the pre-processing stage includes all
processes such as image resizing, alignment, motion magni-
fication, and frame selection approaches that must be com-
pleted before meaningful feature extraction can begin. The
approaches used to classify MEs into different categories

of expressions are based on various feature extraction tech-
niques, namely: i) handcrafted feature extraction, as shown
in Table. 1. ii) convolutional neural networks (CNNs), as
shown in Table. 2, and iii) graph neural networks (GNNs),
as shown in Table. 3. In recent years, researchers use CNNs
and GNNs for the feature extraction process of facial micro-
expression video clips as they are more reliable and perform
better than the handcrafted approaches for the classification.

2.2. Contributions

The contributions of this work are:

• We propose an end-to-end landmark-assisted three-
stream Graph Attention Network with a self-attention
graph pooling, which integrates optical flow magni-
tude, optical flow direction and the landmark points
location features.

• We propose a dynamic selection of varying patch size
across each landmark points to capture the change in
optical flow magnitude and direction features.

• We provide a comprehensive evaluation of the pro-
posed approach on two datasets for 3 and 5 classes of
micro-expressions. We also evaluate our approach on
cross-datasets to generalize our approach.

3. Technical Approach
The overall architecture of our proposed method for the

classification of MEs is shown in Fig. 2. Using Eulerian
Motion Magnification (EMM) [38], we amplified the in-
put signals and extracted the magnified input videos. As a
next step, we apply a threshold value using the optical flow
magnitude to identify high-intensity expression frames and
remove the low-intensity expression frames same as men-
tioned in the paper [11]. We use dlib software [10] to obtain
the landmark points on the face. The patch size across each
landmark point is dynamically selected to capture the subtle
change in the optical flow magnitude and direction compo-
nents. We constructed a three-stream graph attention net-
work for the features such as landmark points location fea-
tures, dynamic patch size of optical flow magnitude features
and the direction features. Finally, we classify the MEs into
different classes of expressions using a three-stream Graph
Attention Network with a self-attention graph pooling layer.

3.1. Landmark Points Detection and Dynamic
Patch Selection (DPS)

We use the dlib [10] software to obtain 68 facial land-
mark points. Out of these 68 points, we use only 37 points
and remove the rest of the points from the contour region of
a face, a few points on the nose region, and the inner points
of the mouth region. In order to capture the subtle variation
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Table 1. Related works for the classification of MEs using handcrafted features.

Author Video/ Key Frames Features Classifier
Wang et al. [37] Video LBP-TOP+ EVM KNN, SVM
Zhang et al. [44] Video (HIGO-TOP, LBP-TOP, HOG-TOP)+Relief SVM

Davison et. al. [4] Video 3DHOG SMO+SVM
Wang et al. [36] Video LBP-TOP + Optical flow SVM
Liong et al. [21] Apex Optical flow + Bi-WOOF SVM
Liong et al. [20] Video Optical flow + Optical Strain +LBP SVM
Liu et al. [26] Video Optical flow features + affine transform SVM
Li et al. [18] Video HIGO+EVM+TIM SVM

Table 2. Related works for the classification of MEs using CNN features.

Author Video/ Key Frame Features Classifier
Liong et al. [24] Onset + Apex Optical Flow + CNN MLP
Kumar et al. [13] Energy Avatar Image CNN MLP

Khoret al. [9] Video Optical flow + CNN-LSTM SVM
Kumar et al. [12] Video CNN, CNN-LSTM, 3DHOG SVM, MLP
Peng et al. [30] Video 2S-3D CNN MLP
Khor et al. [7] Video 2S-CNN MLP

Song et al. [33] Onset, Apex and Offset 3S-CNN MLP
Xia et al. [39] Video CNN+GAN + Transfer Learning MLP
Gan et al. [5] Apex Optical flow + CNN MLP
Li et al. [19] Apex CNN + Attention MLP
Jia et al. [31] Video CNN + Transfer Learning MLP

on the forehead and the cheek region of the face, we add 10
reference points at a minimum distance of 20 pixels above
the eyebrow and 4 points near the mouth, [11]. These refer-
ence landmark points are included using the onset frame.

The graph is constructed using the 51 landmark points.
The points are connected based on the human facial struc-
ture. The landmark point locations are the node features for
the first stream of the network.

The fixed patch size across the landmark points captures
equal information across each point and does not pay im-
portance locally to the region-of-interest, which leads to un-
wanted information and noise added to the patch. There-
fore, it is necessary to select different patch sizes based
on the subtle changes that occur locally in the region-of-
interest. In order to select the different patch size of the
optical flow magnitude and direction components for each
landmark point as the node features, we first calculate the
optical flow magnitude component of patch size equal to
10×10 at the respective landmark location as shown in Fig.
3 for the entire video. Then for each landmark point in an
image, the sum of the optical flow magnitude (10×10 patch
size) is calculated and repeated for the entire video. We se-
lect 10×10 patch size in the beginning to understand the
changes that occur at each point, and we do not want to
miss any changes in the facial muscle movement near the
landmark points. The other reason is that we have motion
magnified the video. Now, after calculating the sum of the
optical flow magnitude for each point in a video, we calcu-

late the (max-min) of the optical flow magnitude for each
landmark point. At this point, we have 51 points with a
(max-min) value calculated for an entire video. Next, we
calculate the percentile score component of these 51 points
of the optical flow magnitude. The patch size is selected
based on the equation 1.

p =

{
6 x 6 , if percentile < 0.34
8 x 8 , if 0.34 ≤ percentile < 0.67
10 x 10 otherwise

(1)

We select a dynamic patch size in our approach based
on the above algorithm to capture the subtle changes of
micro-expressions across each landmark point. The varying
dynamic patch size across each landmark point are shown
in Fig. 1 and 4. This helps in improving the performance
of classification tasks (F1-score) for an individual class of
micro-expressions, as shown in Table. 9 and 10. The op-
tical flow feature matrix of size (NxN) is computed, where
N is the patch size selected. After computation of the opti-
cal flow feature matrix across each landmark, we zero pad
the feature matrix to 10×10 patch size to make computation
easier. We will investigate the use of incremental change in
the patch size for the optical flow features based on our cur-
rent approach. The feature matrix is flattened to a 1D vector
of the feature vector as shown in Fig. 3. The optical flow
magnitude feature vector is an input to the second stream,
and the optical flow direction feature vector is an input to
the third stream of the graph network.
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Table 3. Related works for the classification of MEs using GNN features.

Author Video/ Key Frame Features Classifier
Lo et al. [28] Video AU features + 3D CNN + GNN MLP
Lei et al. [17] Onset + Apex Landmark points + 2S-GCN MLP
Xie et al. [42] Video AU features + GCN MLP

Kumar et al. [11] Important Frames Landmark points + Optical flow magnitude + 2S-GAT MLP
Zhou et al. [46] Onset + Apex Optical flow + AU features + GCN MLP
Lei et al. [16] Video Landmark points + CNN + Graph transformer MLP

Figure 2. Overall architecture of our proposed approach. (a) landmark points are detected on the face and based on these points, the
landmark point location and dynamic patch size features for the optical flow magnitude and direction features are extracted. (b) graph
attention network (GAT) with a self-attention graph pooling (SAGPOOL) layer for training the graph representation is used and, finally,
the fusion of the 3 streams for the classification of MEs for different categories of expressions is based on the datasets.

Figure 3. The process of obtaining the optical flow patch infor-
mation. (a) input frames of a video, (b) N×N optical flow feature
patch around each landmark point, (c) N×N optical flow feature
matrix is the patch around each landmark point.

3.2. Graph Attention Network

Graph Attention Networks [35] are used to influence the
self-attention layer and employ the self-attention of node
features. The graph attention layer shares the node fea-
tures with all its neighboring nodes. The network learns
the attention weights between two connected nodes on the
assumption that neighboring nodes do not contribute the
same weights to the central nodes as the Graph Convolu-
tional Network (GCN) model does. The attention weights
indicate the importance of node features of one node to an-
other node. The graph structure is introduced and the shared

attention mechanism is only performed between the nodes
and their corresponding edges.

3.3. Self-Attention Pooling Layer

Graph pooling reduces the number of parameters from
the network and retains a portion of input graph nodes, pre-
venting overfitting. Self-attention graph pooling [15] uses
any GNN networks to obtain the attention score for the
process of pooling. To select only the necessary nodes, a
pooling ratio of k ∈ (0, 1] which determines the number of
nodes to remain in the final graph structure. First, the self-
attention graph pooling layer calculates the attention scores
from the graph attention layer. Later, it selects the top-k
nodes to remain in the graph based on the attention score
determined from the graph attention layer for the nodes and
also based on the ratio k selected. Finally, based on the ids
of the nodes remaining and their connections between the
nodes, a new feature matrix and the new adjacency matrix
are created to form a new graph structure, respectively.

Finally, the output from the self-attention graph pooling
layer is passed through the readout layer [2] (global average
pooling and global max pooling) to construct a fixed size
node feature representation.

3.4. Three-Stream Graph Attention Network

We developed a novel Three-stream Graph Attention
Network that extracts temporal features from the video, as
shown in Fig. 2. We construct a graph representation us-
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ing a three-frame structure, where the entire video is trans-
formed into a single graph.

We use graph attention layers to design our graph net-
work as shown in Fig. 2. We use 3 graph attention lay-
ers with the ReLU activation function after each layer. We
use 32 hidden channels, the concatenation operation is off,
and the number of heads = 1 for the graph attention layer.
For the first stream of the graph network, the node feature
vector is the x and y location coordinates of the landmark
points. The node location features help in understanding
the change in the movement of each landmark point w.r.t to
its previous position. For the second and the third stream
of our network, we use the varying patch size of the opti-
cal flow magnitude features and the optical flow direction
features. The 3-stream network helps in extracting the rela-
tionship between the different node features to the full ex-
tent. The optical flow magnitude and direction component
capture the spatio-temporal information of the MEs along
with the three frames graph structure used in our network.
The outputs from the three graph attention layers are con-
catenated and propagated to the self-attention graph pooling
layer to remove the less important nodes based on the atten-
tion scores of the nodes and the ratio of k value in the top-k
selection process.

The output of the self-attention graph pooling layer is
passed on to the readout layer to get a fixed size represen-
tation of the output layer. At the end of the readout layer
of the three-stream graph networks, the results are concate-
nated for the graph representation of the three streams. Fi-
nally, the output is passed through the fully connected layer
and softmax layer for classification.

4. Experimental Results
In this section we describe the experimental results such

as the datasets used, experimental setup, and experimental
details used for the classification of MEs. We conducted
a comprehensive study to evaluate the performance of our
proposed approach by removing each of the components of
our approach, to fully understand the overall method. For
the classification of micro-expressions, we conducted cross-
dataset evaluations of the approach to verify the robustness
of our approach and its generalizability to different environ-
ments and subjects.

4.1. Experimental Setup

We conduct experiments on two publicly available
datasets CASME II [43] and SAMM [3] datasets for
the evaluation on 3 and 5 classes of facial micro-
expressions. We evaluate our results using leave-one-
subject-out (LOSO-CV) cross validation approach. The ex-
periments run on a workstation that has Ubuntu 16.04 OS
with 16GB RAM and two NVIDIA GeForce GTX 1080Ti
GPUs.

4.2. Datasets and Preprocessing

The two publicly available datasets are: CASME II
[43] and SAMM [3]. We are interested in classifying the
micro-expressions into 3 and 5 categories of facial micro-
expressions. LOSO-CV is a subject-independent cross-
validation method, which can avoid subject bias and eval-
uate the generalization ability of various algorithms. Table.
4 and 5 shows the dataset distributions for each expression
class for CASME II and SAMM 3 and 5 class categories.

CASME II dataset has 247 ME videos consisting of
26 subjects, categorized into five classes of facial micro-
expressions. The dataset suffers from class imbalance, and
the subjects are limited to only one ethnicity. The video are
in RGB format and the mean age group of subjects is 22.03
years. SAMM dataset has 159 ME samples from 32 sub-
jects which are categorized into 8 classes. The dataset has
gray-scale video samples with 13 different ethnicities. The
mean age group of participants is 33.24 years.

We have aligned each image with a reference image (on-
set frame) and resized the image frames to 256x256. To
solve the issue of data imbalance, we used the data (Happy
and Surprise) from the other dataset (CASME II/SAMM)
while training for the class having a lower number of data
samples of videos to improve the training accuracy depend-
ing on the dataset used for classification. Also, we used
different values of magnification factor (α) (1, 2, 3, 4, and
5) to increase the data samples to overcome the class imbal-
ance of the datasets during training. For the testing purpose,
magnification factor (α) 4 is used. For self-attention graph
pooling layer, we use k = 0.75 as the ratio to calculate the
number of nodes to remain in the graph structure after the
self-attention graph pooling layer. The value of k = 0.75 is
chosen so that we do not eliminate important nodes from the
graph structure and still have plenty of nodes in the graph
structure for the classification process of MEs. We use an
Adam optimizer with a learning rate equal to 0.001. The
learning rate decreases by half every 100 epochs.

Table 4. Summary of the data distributions for CASME II and
SAMM for 3 classes.

Expression Class CASME II SAMM
Negative 88 92
Positive 32 26
Surprise 25 15

4.3. Evaluation Metrics

The class distributions of the two datasets are unbalanced
with respect to the number of classes. Therefore, we can-
not use accuracy as the only performance metric to gauge
our approach for the classification of MEs. We use the un-
weighted F1 (UF1) score and accuracy as the performance
metrics to evaluate the recognition performance.
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Table 5. Summary of the data distributions for CASME II and
SAMM for 5 classes.

Expressions CASME II Expressions SAMM
Disgust 63 Anger 57
Happy 32 Happy 26

Surprise 25 Surprise 15
Repression 27 Contempt 12

Other 99 Other 26

4.3.1 Unweighted F1 score (UF1)

F1-score provides equal importance to each class of the
datasets. From the confusion matrix, we compute the True
Positives (TP), False Positives (FP), and False Negatives
(FP) for each class c. The final balanced F1 score is com-
puted by taking the average for each class F1 scores shown
in equation 2 and 3.

F1c =
2× TPc

2× TPc + FPc + FNc
(2)

UF1 =
F1c
C

, (3)

where, F1c is F1-score for each individual class, C is the
number of classes.

4.3.2 Accuracy

The accuracy is calculated using the equation 4.

Acc =
P

N
× 100% (4)

where P, is the total number of correct predictions and N is
the number of video samples.

4.4. Experimental Results

Table 6 shows the comparison results between the state-
of-the-art methods and our proposed approach for two pub-
licly available datasets: CASME II and SAMM datasets
for three categories of expressions using the LOSO-CV. In
the LOSO-CV technique, we use a K-fold cross-validation
technique, with K equal to N number of subjects, which
means we repeat the experiment N times for the classifica-
tion of MEs with N-1 subjects data for the training process
and the remaining 1 subject for the testing process.

Our three-stream graph attention network approach out-
performs the state-of-the-art methods as shown in Table 6.
For CASME II dataset (3 classes), our accuracy is lower by
0.69% as compared to Kumar et al. [11] and F1-Score is
lower by 0.59% as compared to Gan et al. [5]. Similarly,
for the SAMM dataset our approach achieves higher accu-
racy by 2.26% and F1-Score is higher by 3.45% compared
to the best state-of-the-art method.

The comparison results (5 classes) for the CASME II
dataset using the state-of-the-art approaches and our ap-
proach are shown in Table 7. The recent paper from Nie et
al. [29] had the best F1-Score result for CASME II datasets
for five classes until recent times.The paper from Kumar et
al. [11] had the best accuracy result for CASME II for the
classification of MEs (5 classes) until recent times. When
compared to Nie et al. [29], our proposed approach im-
proves the accuracy by 7.32%, and the F1 score is higher
than their method by 1.63%. Similarly, when compared
to Kumar et al. [11], our approach increases precision by
1.22%, and F1-score is higher by 4.27%.

Table 8 shows the comparative results (5 classes) us-
ing the state-of-the-art approaches and our approach for the
SAMM dataset. The recent paper from Kumar et al. [11]
proposed a 2-stream graph attention network which had
the best results in terms of both F1-score and accuracy for
SAMM dataset (5 classes). When compared to [11], our
proposed approach improves the accuracy by 1.47% and the
F1 score is higher by 0.86%.

When the number of categories of expressions increases
from 3 to 5 the performance can be explained from the Ta-
bles 6, 7 and 8. For the CASME II dataset, as the num-
ber of expression categories increases from 3 to 5, the ac-
curacy and F1 score decrease as shown in Table 6 and 7.
This decrease is due to the following reasons. 1) scalabil-
ity problem arises as to the similarities among the classes
increase, and 2) the number of class samples in each cate-
gory is highly imbalanced, and it is difficult to balance the
dataset, for example, for a repression class of expression
other datasets are not available for augmentation except for
CASME II. For the SAMM dataset, the accuracy and F1
score for three and five categories of classification of MEs
are almost the same as shown in Tables 6 and 8. The reason
for at par accuracy and F1-score even after increasing the
number of categories from 3 to 5 is because balancing the
dataset is easy as the expression categories are universal,
and the similarities among regions-of-interest among the 5
classes of expressions is low.

The approximate computation time of our approach is
4.5s for happy expression, 3.5s for repression expression,
4.8s for surprise expression, and 4s for disgust and other
expressions. The approach by Kumar et al. [11], takes 4s
for happy expression, 3s for repression, 4.5s for surprise ex-
pression, 3.7s for disgust, and other expressions. The rea-
sons for our approach taking a longer time than [11] are
due to the fact that our network is a 3 stream network, and it
consists of a self-attention graph pooling layer, and multiple
fully-connected layers. Our method improves the accuracy
and F1 score by having a trade-off with the computation
time.
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Table 6. Comparison with the state-of-the-art approaches for CASME II and SAMM datasets for 3 categories of expressions.

Method Feature Extraction
Approach

CASME II SAMM
Accuracy F1 Score Accuracy F1 Score

Ngo et al. [14] Handcrafted 0.4900 0.5100 0.5900 0.364
Wang et al. [37] Handcrafted 0.4650 0.4480 0.4150 0.4060
Liong et al. [21] Handcrafted 0.5880 0.6100 0.5830 0.3970
Huang et al. [6] CNN 0.6400 0.6380 0.6380 0.6110
Khor et al. [7] CNN 0.7080 0.7300 0.5740 0.4640
Gan et al. [5] CNN 0.8828 0.8697 0.6818 0.5423

Kumar et al. [13] CNN 0.8621 0.8280 0.8195 0.7056
Liong et al. [23] CNN 0.8741 0.8382 0.7744 0.6588
Xia et al. [41] CNN 0.8030 0.7470 0.7860 0.7410
Lo et al. [28] Graph based 0.5440 0.3030 0.5340 0.2830
Xie et al. [42] Graph based 0.7120 0.3550 0.5230 0.3570

Kumar et al. [11] Graph based 0.8966 0.8695 0.8872 0.8118
Ours Graph based 0.8897 0.8638 0.9098 0.8463

Table 7. Comparison with the state-of-the-art approaches for
CASME II datasets for 5 categories of expressions.

Methods Descriptors Accuracy F1-Score
Khor et al. [8] LBP-TOP 0.3968 0.3589
Khor et al. [8] Alexnet 0.6296 0.6675

Liong et al. [22] Bi-WOOF 0.6255 0.6500
Liu et al. [27] MDMO 0.6695 0.6911
Li et al. [18] HIGO-Mag 0.6721 N/A

Peng et al. [32] ME-Booster 0.7085 N/A
Khor et al. [8] DSSN 0.7078 0.7297
Li et al. [19] CNN+Att. 0.6502 0.6400

Khor et al. [8] SSSN 0.7119 0.7151
Nie et al. [29] 2S-CNN+ML 0.7520 0.7354
Liu et al. [25] CNN 0.6463 0.6349
Lei et al. [17] Graph TCN 0.7398 0.7246
Lei et al. [16] Graph-AU 0.7427 0.7047

Kumar et al. [11] GACNN 0.8130 0.7090
Ours 3 Stream Graph 0.8252 0.7517

4.5. Ablation Study Results

A comprehensive study is performed to evaluate our pro-
posed method and understand the performance of our ap-
proach by removing each component of our method to fully
comprehend the overall approach. Table. 9 and 10 shows
the significance of having the varying and dynamic patch
size selection for capturing the optical flow magnitude and
optical flow direction features.

Table 9 shows the ablation study results (3 classes) for
two publicly available datasets: CASME II and SAMM, re-
spectively. We get the baseline results of our approach with
a constant patch size of optical flow magnitude and optical
flow direction features. The baseline results for the CASME
II datasets accuracy and F1-score are 88.26% and 85.02%.
The baseline results for the SAMM datasets accuracy and
F1-score are 87.97% and 78.69%. When we use the com-
plete network with the varying patch size features of optical
flow and direction features, accuracy increases by 0.71%
and 1.36% in the F1-score for the CASME II dataset, and

Table 8. Comparison with the state-of-the-art approaches for
SAMM datasets for 5 categories of expressions.

Method Descriptors Accuracy F1-Score
Khor et al. [8] LBP-TOP 0.3968 0.3589
Khor et al. [8] CNN 0.5294 0.4260
Khor et al. [8] SSSN 0.5662 0.4513
Khor et al. [8] DSSN 0.5735 0.4644
Li et al. [19] CNN+Att. 0.4090 0.3400
Su et al. [34] CNN+Att. 0.6324 0.5709
Xia et al. [40] CNN+GAN 0.7410 0.7360
Nie et al. [29] CNN+ML 0.5588 0.4538

Song et al. [33] CNN 0.7176 0.6942
Lei. et al. [17] Graph TCN 0.7500 0.6985
Lei et al. [16] Graph-AU 0.7426 0.7045

Kumar et al. [11] GACNN 0.8824 0.8279
Ours 3 Stream Graph 0.8971 0.8365

accuracy increases by 3.01% and 5.94% in F1-score for the
SAMM datasets, respectively.

Table 10 shows the ablation study results (5 classes) for
two datasets: CASME II and SAMM, respectively. We get
the baseline results of our approach with a constant patch
size of optical flow magnitude and optical flow direction
features. The baseline results for the CASME II datasets ac-
curacy and F1-score are 82.11% and 71.43%. The baseline
results for the SAMM datasets accuracy and F1-score are
87.50% and 80.80%. When we use the complete network
with the varying patch size features of optical flow and di-
rection features, accuracy increases by 0.41% and 3.74% in
F1-score for the CASME II dataset, and accuracy increases
by 2.21% and 2.85% in F1-score for the SAMM dataset.

4.6. Cross-Dataset Evaluation Results

We perform a cross-dataset evaluation on the two pub-
licly available micro-expressions datasets to verify the ro-
bustness of our approach and its generalizability to learn-
ing features from different environments and subjects irre-
spective of their gender, race, age, and other aspects. The
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Table 9. Ablation study for CASME II and SAMM dataset for 3 classes of expressions.

Method CASME II (3 classes) SAMM (3 classes)
Accuracy F1-Score Accuracy F1-Score

3 stream network (constant patch size selection) 0.8826 0.8502 0.8797 0.7869
3 stream network (with dynamic patch size selection) 0.8897 0.8638 0.9098 0.8463

Table 10. Ablation study for CASME II and SAMM dataset for 5 classes of expressions.

Method CASME II (5 classes) SAMM (5 classes)
Accuracy F1-Score Accuracy F1-Score

3 stream network (constant patch size selection) 0.8211 0.7143 0.8750 0.8080
3 stream network (with dynamic patch size selection) 0.8252 0.7517 0.8971 0.8365

Figure 4. 6×6 patch size: yellow, 8×8: blue and 10×10: red.
The first image in a row is the high-intensity expression frame, the
second image in a row is with fixed patch size, and the third im-
age in a row is of varying patch size. The first row is where both
fixed patch size and our approach succeeded, whereas for 2nd and
3rd rows, our approach classified correctly and the fixed patch size
failed to classify, and final row is the video frame where our vary-
ing patch size approach failed. (a) happy expression, (b) surprise
expression, (c) disgust expression, and (d) surprise expression. (b)
and (d) expressions are the same but with the different subject.

cross-dataset evaluation is conducted only on three classes
of MEs. The reason for not performing cross-dataset eval-
uation on other categories of expressions is due to having
different classes of expressions present in the SAMM and
CASME II datasets. Table 11 shows the robustness of our
approach for the classification of MEs on 3 classes for the
cross-dataset evaluation procedure. We use the same pro-
posed method as mentioned in the technical approach in
section 3. When trained on the CASME II dataset and tested
on the SAMM dataset, we achieved an accuracy of 82.71%
and 67.01% F1-Score, respectively. Similarly, when trained
on the SAMM dataset and tested on the CASME II dataset,
we achieved an accuracy of 75.17% and 63.91% F1-Score,
respectively. These results are better than the state-of-the-
art graph-based approaches [28] [42], as shown in Table. 6

for CASME II and SAMM datasets (3 classes).

Table 11. Cross-Dataset Evaluation for two publicly available Fa-
cial Micro-Expression Datasets (3 classes).

Training Dataset
Testing Dataset

CASME II SAMM
Accuracy UF1 Accuracy UF1

CASME II - - 0.8271 0.6701
SAMM 0.7517 0.6391 - -

5. Conclusions and Future Work
In this paper, we proposed a Three-stream Graph Atten-

tion Network for the node location features, optical flow
magnitude, and optical flow direction features with the help
of three frames structures to extract the spatio-temporal in-
formation. We designed an algorithm to dynamically select
the varying patch size across each landmark point for the
optical flow features to be extracted. Our dynamic patch
size approach helped in improving the accuracy and F1
score for the CASME II and SAMM datasets when com-
pared to the fixed patch size approach as shown in Table. 9
and 10. We conducted a comprehensive evaluation of the
CASME II and SAMM datasets for 3 and 5 classes of ex-
pressions. Our proposed approach outperforms the state-
of-the-art methods by 1.22% in terms of accuracy for the
CASME II dataset (5 classes). For the SAMM dataset, our
approach improves the accuracy results from the current ap-
proaches by 2.26% and 1.47% for the 3 and 5 categories of
expressions. We conducted an ablation study for CASME
II and SAMM datasets. We also performed a cross-dataset
experiment to evaluate the generalization capability of our
approach for 3 categories of expressions. In the future, we
will work on generating ME videos to overcome the imbal-
ance of the classes and increase the data samples for the
training purpose.
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