
Valence and Arousal Estimation based on Multimodal Temporal-Aware Features
for Videos in the Wild

Liyu Meng1, *, Yuchen Liu2, *, Xiaolong Liu1, Zhaopei Huang2

Wenqiang Jiang1, Tenggan Zhang2, Chuanhe Liu1, and Qin Jin2

1 Beijing Seek Truth Data Technology Co.,Ltd.
2 School of Information, Renmin University of China

Abstract

This paper presents our submission to the Valence-
Arousal Estimation Challenge of the 3rd Affective Behavior
Analysis in-the-wild (ABAW) competition. Based on multi-
modal feature representations that fuse the visual and au-
ral information, we utilize two types of temporal encoder
to capture the temporal context information in the video,
including the transformer based encoder and LSTM based
encoder. With the temporal context-aware representations,
we employ fully-connected layers to predict the valence and
arousal values of the video frames. In addition, smoothing
processing is applied to refine the initial predictions, and a
model ensemble strategy is used to combine multiple results
from different model setups. Our system achieves the per-
formance in Concordance Correlation Coefficients (ccc) of
0.606 for valence, 0.602 for arousal, and mean ccc of 0.601,
which ranks the first place in the challenge.

1. Introduction
As a crucial part of human-computer interaction, affec-

tive computing can be widely used in medical, market anal-
ysis, social and other interaction scenarios, and it has ex-
tremely indispensable theoretical significance and practical
application value to realize humanized communication for
intelligent machines. However, emotions usually arise in
response to either an internal or external event that has a
positive or negative meaning to an individual [34]. When
recognizing emotions, subtle differences in emotional ex-
pressions can also produce ambiguity or uncertainty in emo-
tion perception. Fortunately, with the continuous research
in psychology and the rapid development of deep learning,
affective computing is gaining more and more attention, for
example, Aff-wild [16,20,39] and Aff-wild2 [15,17–23,39]
has provided us with a large-scale dataset of hard labels,

*These authors contributed equally to this work and should be consid-
ered co-first authors.

driving the development of affective computing.
In the field of single modality emotion recognition, uni-

modal information is susceptible to various noises and can
hardly reflect the complete emotional state. Multimodal
emotion recognition can effectively utilize the information
contained in multiple modal recognition, capture the com-
plementary information between modalities, and thus im-
prove the recognition ability and generalization ability of
the model [1].

Our system for the V&A prediction challenge contains
five key components. First, we preprocess the videos into
image frames, extract and align the faces in the images.
Then, we apply visual and audio feature extractors to extract
visual and audio features respectively, which are concate-
nated to form the multimodal feature representations. Based
on such representations, we further apply two types of tem-
poral encoder, including LSTM [33] and Transformer [37],
to capture the temporal context information in the video.
Next, we feed these temporal-aware features to a regres-
sor with fully-connected layers to predict the valence and
arousal values of the video frames. Finally, we conduct a
smoothing processing strategy and a model ensemble strat-
egy to further improve the predictions.

2. Related Works

Various solutions have been proposed on the Aff-wild2
dataset for the ABAW Competition [15, 17–23, 39]. We
briefly review some of the studies, including deep learning
based approaches for face expression analysis. For exam-
ple: feature fusion, attention mechanisms and iterative self-
distillation.

For feature fusion, Mollahosseini et al. [38] propose a
temporal fusion approach to combine multimodal features
and temporal features. Multimodal representation learning,
which aims to narrow the heterogeneity gap among differ-
ent modalities, plays an indispensable role in the utilization
of ubiquitous multimodal data [10]. For instance, works
in [28] [27] use both audio and video channel features to
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analyze emotions in video clips and achieve decent perfor-
mance.

For the encoding, CAER-Net [24] propose an attention-
based mechanism that can be used to assist the emotion
recognition using context features. Based on attention
mechanism, the role of the context part is more inter-
pretable. However, this may lead to a certain degree of fea-
ture redundancy. Farzaneh et al. [8] propose the Discrimi-
nant Distribution-Agnostic loss (DDA loss) to regulate the
distribution of deep features. With the help of DDA loss,
features with rich semantic information for facial expres-
sion recognition can increase inter-class separation and de-
crease intra-class variations, despite training on unbalanced
datasets.

3. Method
Given a video X , it can be divided into the visual data

Xvis and the audio data Xaud, where Xv can be illustrated
as a sequence of image frames {F1, F2, ..., Fn}, and n de-
notes the number of image frames in X . In the valence-
arousal estimation task, each frame in X is annotated with
a sentiment label y consisting of a valence label yv and an
arousal label ya. The task is to predict the sentiment label
for each frame in the video.

The overall pipeline consists of five components. First,
all videos are processed to get independent image frames
with facial expressions. Secondly, we extract the visual and
audio features corresponding to each frame in the videos,
and concatenate them to get multimodal features. Thirdly,
the multimodal features are fed into a temporal encoder to
model the temporal context in the video. Fourthly, with
the temporal-aware representations, fully-connected layers
are employed to predict the sentiment labels. Finally, some
post processors are applied to further improve the predic-
tions. Figure 1 shows the overall framework of our pro-
posed method.

3.1. Pre-processing

The videos are first split into image frames, and a face
detector is applied to get the face bounding box and facial
landmarks in each image. Then, the face in each image
is cropped out according to the bounding box, and these
cropped images are aligned based on the facial landmarks.
Here we simply utilize the cropped and aligned facial im-
ages provided by the ABAW competition officials.

In addition, some of the frames do not contain valid faces
because either the faces in them are not detected or there is
no face in them. As for an invalid frame, we find the nearest
valid frame around it, and replace it with this valid frame.

3.2. Multimodal Feature Representation

We use three pre-trained models to extract the visual
features, including the DenseNet-based [12] facial expres-

sion model, IResNet100-based [6] facial expression model,
and the IResNet100-based Facial Action Unit (FAU) model.
We also extract four types of audio features, which are
eGeMAPS [7], ComParE 2016 [36], VGGish [11], and
wav2vec2.0 [3].

3.2.1 Visual Features

The first type of visual features is extracted by a pre-trained
DenseNet model. Specifically, the DenseNet model is pre-
trained on the FER+ and the AffectNet datasets. The di-
mension of the DenseNet-based visual features is 342.

The other kinds of visual features are based on two pre-
trained IResNet100 models. The first one is pre-trained
on the FER+ [4], RAF-DB [26] [25], and AffectNet [29]
datasets. Specifically, in the pre-training stage, the faces in
these datasets are aligned by the five face keypoints, and
then resized into 112x112. The accuracy of the model in
the pre-training stage is 0.8668, 0.8860, and 0.6037 on the
FER+, RAF-DB, and AffectNet dataset respectively. The
dimension of the visual feature vectors is 512.

The second model is first trained on the Glint360K [2]
dataset with the face recognition pre-training task. Then the
model is further trained on a authorized commercial FAU
dataset. The dimension of the visual feature vector is 512.

3.2.2 Audio Features

The audio features are composed of manually designed low-
level descriptors (LLDs) and more semantically informative
features extracted by deep learning methods. The LLDs
contain the eGeMAPS and the ComParE 2016, where both
of them are extracted by the openSmile. The dimensions
of these features are 23 and 130 respectively. The high-
level features are based on pre-trained wav2vec2.0 and VG-
Gish models. The wav2vec2.0 is a self-supervised model
which is pre-trained and fine-tuned on 960 hours of the Lib-
rispeech [31]. The dimension of the wav2vec-based fea-
tures is 768. The VGGish is pre-trained on a large youtube
dataset (Audioset [9]). The dimension of VGGish-based
features is 128.

3.2.3 Multimodal Fusion

Given the visual features fv and audio features fa corre-
sponding to a frame, they are first concatenated and then
fed into a fully-connected layer to produce the multimodal
features fm. It can be formulated as follows:

fm = Wf [f
v; fa] + bf (1)

where Wf and bf are learnable parameters.
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Figure 1. The overall framework of our proposed method.

3.3. Temporal Encoder

Due to the limitation of GPU memory, we split the
videos into segments at first. Given the segment length
l and stride p, a video with n frames would be split into
[n/p]+1 segments, where the i-th segment contains frames
{F(i−1)∗p+1, ..., F(i−1)∗p+l}. With the multimodal features
of the i-th segment fm

i , we employ a temporal encoder to
model the temporal context in the video. Specifically, two
kinds of structures are utilized as the temporal encoder, in-
cluding LSTM and Transformer Encoder.

3.3.1 LSTM-based Temporal Encoder

We employ a Long Short-Term Memory Network (LSTM)
to model the sequential dependencies in the video. For the
i-th video segment si, the multimodal features fm

i are di-
rectly fed into the LSTM. In addition, the last hidden states
of the previous segment si−1 are also fed into the LSTM to
encode the context between two adjacent segments. It can
be formulated as follows:

gi, hi = LSTM(fm
i , hi−1) (2)

where hi denotes the hidden states at the end of si. h0 is
initialized to be zeros. To ensure that the last frame of si−1

and the first frame of segment si are consecutive frames,
there is no overlap between two adjacent segments when
LSTM is used as the temporal encoder. In another word,
the stride p is the same as the segment length l.

3.3.2 Transformer-Based Temporal Encoder

We utilize a transformer encoder to model the temporal in-
formation in the video segment as well, which can be for-
mulated as follows:

gi = TRMEncoder(fm
i ) (3)

Unlike LSTM, the transformer encoder just models the
context in a single segment and ignores the dependencies of
frames between segments. In order to cover the context of
different frames, there can be overlaps between consecutive
segments, which means p ≤ l.

3.4. Training and Inferencing

After the temporal encoder, the features gi are finally fed
into fully-connected layers for regression, which can be for-
mulated as follows:

ŷi = Wpgi + bp (4)

where Wp and bp learnable parameters, ŷi ∈ Rl×2 are the
predictions of the valence and arousal labels of si.

We use the Concordance Correlation Coefficient (CCC)
between the predictions and the ground truth labels as the
loss function during training, which can be denoted as fol-
lows:

L =
∑

c∈{v,a}

(1− CCC(ŷc, yc)) (5)

where ŷv, ŷa, yv, ya denotes the predictions and the ground
truth labels of valence and arousal in a batch respectively.

3.5. Post-processing

In the testing stage, we apply some additional post pro-
cessors to the predictions. First, some of the predictions
may exceed the range of [−1, 1], and we simply cut these
values to −1 or 1.

Secondly, since the sentiment of individuals varies con-
tinuously over time, the values of valence and arousal also
vary smoothly over time. Thus, we apply a smoothing
function to the predictions to make them more temporally
smooth. Specifically, given the original prediction of the
j-th frame ŷj , the final prediction ỹj is set as the average
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Table 1. The performance of our method on the validation set.

Model Visual Features Audio Features Valence Arousal
LSTM DenseNet wav2vec 0.5544 0.6531

Transformer DenseNet wav2vec, ComParE 0.6050 0.6416
Transformer ires100,fau wav2vec,VGGish,ComParE,eGeMAPS 0.5883 0.6689

prediction value of a window with w frames centered on
the j-th frame, i.e., {ŷj−[w/2], ..., ŷj+[w/2]}.

4. Experiments
4.1. Dataset

The third ABAW competition includes four challenges:
i) uni-task Valence-Arousal Estimation, ii) uni-task Ex-
pression Classification, iii) uni-task Action Unit Detection,
and iv) MultiTask-Learning. All challenges are based on
a common benchmark database, Aff-Wild2, a large-scale
field database and the first to be annotated according to
valence-arousal, expression, and action units. the Aff-
Wild2 database extends the Aff-Wild dataset, with more
videos and annotations for all behavior tasks. The Valence-
Arousal Estimation Challenge contains 567 videos, that
have been annotated by four experts using the method pro-
posed in [5].

As for the visual feature extractors, the FER+, RAF-DB,
and AffectNet datasets are used for pre-training. The RAF-
DB is a large-scale database of facial expressions, which in-
cludes about 30,000 images of a wide variety of faces down-
loaded from the Internet. We use the single-label subset in
RAF-DB, including 7 classes of basic emotion. AffectNet
dataset contains over one million facial images, collected
from the Internet. Approximately half of the retrieved im-
ages (approximately 440,000) were manually annotated for
the presence of seven discrete facial expressions (classifi-
cation model) as well as the intensity of value and arousal.
In addition, an authorized commercial FAU dataset is also
used to pre-train an visual feature extractor. It contains 7K
images in 15 face action unit categories(AU1, AU2, AU4,
AU5, AU6, AU7, AU9, AU10, AU11, AU12, AU15, AU17,
AU20, AU24, and AU26).

4.2. Experiment Settings

The models are trained on Nvidia GeForce GTX 1080 Ti
GPUs, each with 11GB memory, and with the Adam [14]
optimizer. The results reported in the following experiments
are based on the average score of 3 random runs. The model
is trained for 30 epochs, the batch size is 16 and the dropout
rate is 0.3. As for the LSTM model, the learning rate is
0.0003, the dimension of multimodal features and the hid-
den size are 512, the length of video segments is 100, the
number of regression layers is 2 and the hidden sizes are

Table 2. The performance of our method on the 5-fold cross-
validation. Original means the official validation set.

Valence Arousal Mean
Fold 1 0.6177 0.6134 0.6156
Fold 2 0.5292 0.6296 0.5794
Fold 3 0.6495 0.6651 0.6573
Fold 4 0.5468 0.6116 0.5792
Fold 5 0.5272 0.6405 0.5839

Average 0.5741 0.6320 0.6031
Original 0.5883 0.6689 0.6286

{512, 256} respectively.
As for the transformer encoder model, the learning rate

is 0.0002, the length of video segments is 250, the stride
of segments is 250 or 100, the dimension of multimodal
features is 512, the number of encoder layers is 4, the num-
ber of attention heads is 4, the dimension of feed-forward
layers in the encoder is 1024, the number of regression lay-
ers is 2 and the hidden size of regression layers are {512,
256} respectively. As for the smooth function in the post-
processing stage, the size of the smoothing window is 20
for valence and 50 for arousal.

4.3. Overall Performance on Validation Set

Table 1 shows the experimental results of our proposed
method on the validation set of the Aff-Wild2 dataset. The
Concordance Correlation Coefficient (CCC) is used as the
evolution metric for both valence and arousal prediction
tasks. As is shown in the table, our proposed transformer
encoder structure achieves the best performance for both
valence and arousal, and the LSTM structure achieves com-
petitive performance for arousal as well. It proves the effec-
tiveness of each of our proposed structures.

We also conduct experiments of 5-fold cross-validation,
which use the transformer-based structure with the fea-
ture set {ires100, fau, wav2vec, VGGish, ComParE,
eGeMAPS}. The results are shown in Table 2.

4.4. Model Ensemble

In order to further improve the performance of our pro-
posed models, we apply a model ensemble strategy to these
models. We train some models with different basic struc-
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Table 3. The results of each single model and the ensemble of
them for the valence prediction task on the validation set.

Model Features Valence
Transformer DenseNet,wav2vec,ComParE 0.6089
Transformer DenseNet,wav2vec,ComparE,VGGish,eGeMAPS 0.6113
Transformer ires100,fau,wav2vec,VGGish 0.5833
Transformer ires100,fau,VGGish,ComParE,eGeMAPS 0.5831

Ensemble 0.6555

Table 4. The results of each single model and the ensemble of
them for the arousal prediction task on the validation set.

Model Features Arousal
LSTM DenseNet,wav2vec 0.6591

Transformer DenseNet,wav2vec 0.6488
Transformer DenseNet,wav2vec,ComParE 0.6458
Transformer DenseNet,wav2vec,VGGish,eGeMAPS 0.6456
Transformer ires100,fau,wav2vec,VGGish 0.6628
Transformer ires100,fau,wav2vec,VGGish,ComParE,eGeMAPS 0.6604

Ensemble 0.7088

Table 5. Ablation study of features on the validation set.

Visual Audio Valence Arousal
DenseNet None 0.5290 0.5969
DenseNet wav2vec 0.5596 0.6460

ires100, fau wav2vec 0.5357 0.6412
DenseNet wav2vec, ComParE 0.6050 0.6416
DenseNet wav2vec, VGGish, ComParE, eGeMAPS 0.5972 0.6370
ires100 wav2vec, VGGish, ComParE, eGeMAPS 0.5055 0.6166

fau wav2vec, VGGish, ComParE, eGeMAPS 0.5707 0.6168
ires100, fau wav2vec, VGGish, ComParE, eGeMAPS 0.5883 0.6689

tures, hyper-parameters and combinations of features, and
get the predictions of them respectively in the testing stage.
Then, the average value of the prediction of these models is
taken as the final prediction.

Table 3 and Table 4 show the results of model ensembles
on the validation set for the valence and arousal prediction
task respectively. The results indicate that the model ensem-
ble strategy can combine the strengths of different models
and achieve significant improvement over them.

4.5. Ablation Study

In this section, we conduct an ablation analysis of dif-
ferent features to compare their contribution of them. Table
5 shows the results of the ablation study for our proposed
visual and audio features. The transformer-based structure
is used for the ablation study.

As is shown in the table, each of our proposed features
has contributed to the performance. As for the audio fea-
tures, the ComParE and wav2vec make the most contribu-
tions to the valence prediction task, while the VGGish and
wav2vec make the most contributions to arousal. As for the
visual features, FAU contributes more than ires100 to va-
lence, and DenseNet contributes more than the combination

Table 6. The results on the test set of different submissions.

Submit Strategy Valence Arousal Mean
1 Ensemble 1 0.5605 0.5165 0.5385
2 Ensemble 2 0.5779 0.5781 0.5780
3 Train-Val-Mix 0.6060 0.5960 0.6010
4 Ensemble 3 0.5898 0.6018 0.5958
5 5-Fold 0.5929 0.5985 0.5957

of FAU and ires100 for valence, while less for arousal.

4.6. Test Performance

In this section, we briefly introduce our strategies for
submissions and show the performance of our proposed
method on the test set. Table 6 shows the strategies and
results for each of our five submissions. As for the 1st, 2nd
and 4th submissions, we apply the simple training and val-
idation strategy, where we only train the models on the of-
ficial training set and choose the models with the best per-
formance on the official validation set. Specifically, we en-
semble only 3 or 4 models to get the predictions for the 1st
submission, and ensemble more models with more varia-
tions of feature combinations for the 2nd and 4th submis-
sion. For example, the model and feature combination of
the 2nd submission is shown in Table 3 and 4.

Moreover, as for the 3rd and 5th submissions, we pro-
pose two additional training and validation strategies, in-
cluding Train-Val-Mix and 5-Fold. Specifically, as for the
Train-Val-Mix strategy, we mix up the training and vali-
dation set, and use both of them for training. In order to
choose models with nice and stable performance without
data for validation, we empirically choose the models from
16 to 25 epochs in the training stage for Arousal, and from
11 to 16 epochs for Valence. Finally, we ensemble all these
models to get test results. As for the 5-Fold strategy, we mix
up the training and validation set, and divide them into five
folds. For each time, one fold is used for validation, and
the rest four folds are used for training. Since we get five
models with five folds, we ensemble these models to get test
results. As is shown in the table, the Train-Val-Mix strategy
achieves the best test performance, and the 5-Fold strategy
also achieves competitive performance, which proves the
effectiveness of our proposed strategies.

Finally, Table 7 shows the test results of all the teams
in the Valence-Arousal Estimation Challenge, and our pro-
posed method achieves surpass performance over all the
other teams.

5. Conclusion
In this paper, we introduce our method for the Valence-

Arousal Estimation Challenge of the 3rd Affective Behav-

2349



Table 7. The overall results and ranks on the test set.

Method Valence Arousal Mean
Ours 0.6060 0.5960 0.6010

FlyingPigs [40] 0.5200 0.6016 0.5608
PRL [30] 0.4500 0.4448 0.4474

HSE-NN [35] 0.4174 0.4538 0.4356
AU-NO [13] 0.4182 0.4066 0.4124

LIVIA-2022 [32] 0.3742 0.3633 0.3688
Netease Fuxi Virtual Human [41] 0.3005 0.2442 0.2723

baseline 0.1800 0.1700 0.1750

ior Analysis in-the-wild (ABAW) competition. Our method
utilizes multimodal information and employs a temporal en-
coder to model the temporal context in the videos. With the
temporal-aware multimodal features, fully-connected layers
are applied to get predictions. In addition, a smoothing pro-
cessing strategy and a model ensemble strategy are used to
improve the predictions. The experiment results show that
our method achieves 0.606 ccc for valence, 0.602 ccc for
arousal and 0.601 mean ccc on the test set of the Aff-Wild2
dataset, which ranks the first place in the challenge.
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