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Abstract

Whole-body 3D human mesh estimation aims to recon-
struct the 3D human body, hands, and face simultaneously.
Although several methods have been proposed, accurate
prediction of 3D hands, which consist of 3D wrist and fin-
gers, still remains challenging due to two reasons. First, the
human kinematic chain has not been carefully considered
when predicting the 3D wrists. Second, previous works uti-
lize body features for the 3D fingers, where the body feature
barely contains finger information. To resolve the limita-
tions, we present Hand4Whole, which has two strong points
over previous works. First, we design Pose2Pose, a mod-
ule that utilizes joint features for 3D joint rotations. Using
Pose2Pose, Hand4Whole utilizes hand MCP joint features
to predict 3D wrists as MCP joints largely contribute to
3D wrist rotations in the human kinematic chain. Second,
Hand4Whole discards the body feature when predicting 3D
finger rotations. Our Hand4Whole is trained in an end-to-
end manner and produces much better 3D hand results than
previous whole-body 3D human mesh estimation methods.
The codes are available here 1.

1. Introduction

Whole-body 3D human mesh estimation aims to local-
ize mesh vertices of all human parts, including body, hands,
and face, simultaneously in the 3D space. By combining 3D
mesh of all human parts, we can understand not only human
body pose and shape but also human intention and feeling
through hand poses and facial expressions. The challenges
of this problem are small image sizes and complicated ar-
ticulations of hands, and smoothly connecting estimated 3D
body and hands meshes.

Existing whole-body 3D human mesh estimation sys-
tems [4,5,25,34] consist of body, hands, and face networks.
As hands and face take small areas in the human image, the
previous works crop and resize the hands and face images

1https://github.com/mks0601/Hand4Whole RELEASE
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Figure 1. (a) Four hand MCP joints (red circles) provide essential
3D wrist rotation information as they are child nodes of a wrist in
hand kinematic chain. (b) The average of width and height (pixel)
of hand boxes in MSCOCO [12]. The detailed finger information
is almost missing at the output of the standard backbone, ResNet
(less than 1 pixel).

to higher resolutions. Then, they process the human, hands,
and face images using body, hand, and face networks, re-
spectively. Their body, hand, and face networks perform
global average pooling (GAP) to the extracted image fea-
tures and predict 3D body, hands, and face, respectively,
which consist of 3D joint rotations and other parameters
(e.g., body shape and facial expressions). The 3D body,
hands, and face are passed to SMPL-X layer [24] for the
final whole-body 3D mesh.

3D hands recovery consists of the 3D wrist and finger
rotation predictions. Accurate 3D hands recovery is a key
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Figure 2. Qualitative results comparison between the proposed Hand4Whole, ExPose [4], and FrankMocap [25] when hands are invisible.
Taking a body feature is necessary for plausible 3D wrist rotations.

for the whole-body 3D human mesh estimation; however,
previous works [4, 5, 25, 34] produce inaccurate 3D hands
due to two reasons. First, for the 3D wrist rotation, they
have not carefully considered the human kinematic chain.
In the human kinematic chain, the wrist connects the hu-
man body and fingers’ root joints (i.e., hand MCP joints);
therefore, utilizing human body and MCP joint information
is necessary for accurate 3D wrist rotation. In particular, the
MCP joint information provides the necessary cue to deter-
mine 3D wrist rotations, as shown in Figure 1 (a). Further-
more, the body information provides overall body posture,
which can make the predicted 3D wrist rotation be anatomi-
cally plausible and smoothly connected with the body, even
when hands are occluded or truncated, as shown in Figure 2.
However, none of the previous works used a combination
of the body feature and MCP joint features for the 3D wrist
rotations. All of them used one of the body feature [34],
hand feature [4, 25], and their combination [5], where the
hand feature contains lots of unnecessary information, such
as finger information, while the MCP joint feature contains
essential 3D wrist rotation information. In particular, the
finger information can hurt the 3D wrist rotation accuracy
as the fingers often move independently to the wrists and
have highly complicated articulations.

Second, for the 3D finger rotations, previous works [5,
34] used body features in addition to hand features. The
body feature mainly contains much unnecessary informa-
tion, such as body and backgrounds, while having very
coarse hand information due to the small sizes of hands,
as shown in Figure 1 (b). Therefore, such unnecessary in-
formation can corrupt the 3D finger rotation accuracy.

To resolve the above limitations, we present
Hand4Whole, a whole-body 3D human mesh estima-
tion system that produces much better 3D hands in the
whole-body 3D mesh. Hand4Whole has two stronger
points than previous works. First, we design Pose2Pose,
a 3D positional pose-guided 3D rotational pose prediction
framework. Here, the 3D positional and rotational pose
represent 3D joint positions and rotations, respectively. In
contrast to previous works [4,5,25] that vectorize the image

feature by performing GAP, ours extract joint features
by our positional pose-guided pooling (PPP). The joint
features enable Pose2Pose to understand different semantic
information of each joint, while the previously used vec-
torized image feature only provides only an instance-level
understanding. Using Pose2Pose, Hand4Whole utilizes
a combination of the body feature and eight MCP joint
features of two hands for the 3D wrist rotations. The
body feature makes the 3D wrist rotations anatomically
plausible when hands are occluded or truncated, as shown
in Figure 2. Also, from an anatomical point of view, the
eight hand MCP joint features provide essential 3D wrist
rotations among thirty finger joints of two hands, as shown
in Figure 1 (a). By combining both features, Hand4Whole
produces much more accurate 3D wrist rotations.

Second, we discard body features when predicting 3D
finger rotations. As a result, we can prevent the coarse hand
information from corrupting the 3D finger rotation accu-
racy. Although we do not use the body feature for 3D finger
rotation, the 3D hands can be anatomically plausible and
smoothly connected with body joints as our 3D wrist rota-
tions already consider the body network’s feature. In par-
ticular, the wrists are root nodes of a human hand kinematic
chain, which determine global 3D rotations of fingers. Our
Hand4Whole is trained in an end-to-end manner and signif-
icantly outperforms previous whole-body 3D human mesh
estimation methods.

Our contributions can be summarized as follows.

• Our Hand4Whole produces much more accurate 3D
hands, which consists of the 3D wrist and finger ro-
tations. Using our Pose2Pose, Hand4Whole utilizes
both body and hand MCP joint features for accurate
3D wrist rotation and smooth connection between 3D
body and hands.

• In addition, we discard body features when predicting
3D finger rotations.

• Hand4Whole is trained in an end-to-end manner and
largely outperforms previous whole-body 3D human
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mesh estimation methods.

2. Related works
Although there have been remarkable progress in 3D

body-only [3, 14, 16, 18, 20, 21, 28], hand-only [2, 7, 17, 35],
and face-only [26] mesh estimation, there have been few at-
tempts to simultaneously recover the 3D body, hands, and
face. Several early works are based on an optimization-
based approach, which fits a 3D human model to the 2D/3D
evidence. Joo et al. [13] fits their human models (i.e., Frank
and Adam) to 3D human joints coordinates and point clouds
in a multi-view studio environment. Xiang et al. [30] ex-
tended Joo et al. [13] to the single RGB case. SMPLif-
X [24] and Xu et al. [32] fit their human models, SMPL-X
and GHUM, respectively, to 2D human joint coordinates.
As the above optimization-based methods can be slow and
prone to noisy evidence, a regression-based approach is
presented recently. Recently, several neural network-based
methods have been proposed. All of them consist of body,
hand, and face networks, where each takes a human image,
hand-cropped image, and face-cropped image, respectively.
The three networks predict SMPL-X parameters for a fi-
nal whole-body 3D human mesh. ExPose [4] is the earli-
est regression-based approach, which utilizes the three sep-
arated networks. FrankMocap [25] consists of body and
hand networks, and their hand prediction is attached to 3D
body results. Zhou et al. [34] utilize 3D joint coordinates
for the 3D joint rotation prediction. PIXIE [5] introduced a
moderator to predict 3D joint rotations.

Compared to the recent whole-body 3D human mesh es-
timation methods, our Hand4Whole has three clear novel
contributions. First, we design Pose2Pose as the main mod-
ule of our Hand4Whole. Pose2Pose enables Hand4Whole
to understand different semantic information of each joint
by introducing joint features, while previous works [4,5,25]
provides only an instance-level feature to their system by
performing the GAP. Second, Hand4Whole uses both body
and hand MCP joint features for the 3D wrist rotations. On
the other hand, ExPose [4] and FrankMocap [25] predict 3D
wrist rotation only from a hand feature without a body fea-
ture. The absence of the body feature when predicting the
3D wrist rotations results in implausible 3D wrist rotations
when hands are occluded or truncated, as shown in Figure 2.
Zhou et al. [34] predict 3D wrist rotations only from a body
feature without a hand feature. They suffer from inaccurate
3D wrist rotations as they do not utilize MCP joint features.
PIXIE [5] combines body and hand features by a moderator
to predict 3D wrist rotations. However, their hand feature
contains lots of unnecessary information, such as finger in-
formation, which can hurt the 3D wrist rotation accuracy
as fingers often move independently to the wrists. Third,
Hand4Whole discards the body feature when predicting 3D
finger rotations. In contrast, Zhou et al. [34] and PIXIE [5]

uses the body feature, which contains very coarse hand in-
formation due to the small pixel size of the hands.

3. Hand4Whole

Figure 3 shows the overall pipeline of the proposed
Hand4Whole for whole-body 3D human mesh estimation.
It consists of BodyNet, HandNet, and FaceNet, which take
cropped and resized human, hands, and face images, respec-
tively. The outputs of each network are fed to SMPL-X [24]
layer to obtain the final whole-body 3D human mesh.

3.1. Pose2Pose

To start, we describe Pose2Pose, a 3D positional pose
(i.e., 3D joint positions)-guided 3D rotational pose (i.e., 3D
joint rotations) prediction framework. Figure 4 shows the
overall pipeline of Pose2Pose when it is used for the 3D
body. Pose2Pose enables the proposed Hand4Whole to un-
derstand different semantic information of each joint. We
use Pose2Pose as the main module of our BodyNet and
HandNet. Pose2Pose consists of two stages, described in
the following.
3D joint coordinates estimation. Pose2Pose firsts predicts
the 3D joint coordinates P ∈ RJ×3 from a human image.
J denotes the number of joints. x- and y-axis of P are in
pixel space, and z-axis of it is in root joint (i.e., pelvis for
the body and wrist for the hand)-relative depth space. To
this end, ResNet-50 [10] extracts 2048-dimensional image
feature map F from the input image. We use ResNet after
removing the GAP and fully-connected layer of the last part
of the original ResNet. Then, a 1-by-1 convolutional layer
predicts 3D heatmaps of human joints H from F, where H
has the same height and width as F. To make 3D heatmaps
from the 2D feature map, the 1-by-1 convolutional layer
changes the channel dimension from 2048 to 8J . Then, we
reshape the 8J-dimensional feature map to J dimensional
3D heatmap whose depth size is 8. The 3D joint coordinates
P is obtained from H by the soft-argmax operation [27] in
a differentiable way.
Positional pose-guided pooling (PPP). Positional pose-
guided pooling extracts joint features from the 2D feature
map F. To this end, we apply a 1-by-1 convolution to F to
change its channel dimension from 2048 to 512. Then, we
perform a bilinear interpolation to the output of the convo-
lution at (x, y) position of 3D joint coordinates P, which
produce joint features FP ∈ RJ×512. Please note that as
(x, y) coordinates of P are in pixel space, we use them di-
rectly for the interpolation without a 3D-to-2D projection.
The joint features provide different contextual information
of each joint, useful for the 3D joint rotation [8].
3D joint rotations estimation. For the 3D joint rotation θ,
we concatenate the joint features FP and 3D joint coordi-
nates P and flatten it, denoted by v ∈ R512J+3J . Then, v
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Figure 3. The overall pipeline of Hand4Whole. The BodyNet predicts 3D body parameters, which include 3D wrist rotations, from a
combination of body and hand MCP joint information. The HandNet predicts 3D finger rotation only from fine hand information without
combining coarse hand information, extracted from the BodyNet. The weights in HandNet for the right and flipped left hand images are
shared. The final whole-body 3D human mesh is obtained by forwarding the outputs of BodyNet, HandNet, and FaceNet to the SMPL-
X [24] layer. The hand and face boxes are predicted from BodyNet, not shown in the figure. Our Hand4Whole is trained in an end-to-end
manner.
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Figure 4. Illustration of the Pose2Pose in our BodyNet. It extracts
the joint features by interpolating (x, y) pixel position of the 3D
joint coordinates Pb on the output of 1-by-1 convolution. For the
simplicity, we describe only right elbow and ankle.

is passed to a fully-connected layer, which produces the 3D
joint rotations θ.

3.2. BodyNet

The BodyNet outputs 3D body joint rotations, SMPL-
X shape parameters, camera parameters, and boxes of hands
and face. Pose2Pose plays a central role in the prediction of
the 3D body joint rotation.
3D body joint rotations. Using the Pose2Pose, BodyNet
predicts 3D body joint rotation θb ∈ R22×3 from a hu-
man image Ib ∈ R3×256×192, downsampled from a high-
resolution human image I ∈ R3×512×384. The downsam-
pling is necessary to save the computational cost. One mod-
ification we made to the Pose2Pose when predicting the 3D
joint rotation is that instead of only using vb, a concatena-

tion of 3D body joint coordinates and body joint features,
BodyNet additionally uses vm, a concatenation of 3D co-
ordinates and features of MCP joints. vm is obtained from
the HandNet, and Section 3.3 describes how we obtain it in
detail. The additional usage of MCP joint information en-
ables BodyNet to produce more accurate 3D wrist rotations.
Please note that the predicted 3D body joint rotations θb in-
clude 3D wrist rotations. The hand MCP joint features are
not only beneficial for 3D wrist rotations, but also for 3D
elbow rotations, as 3D elbow rotations in the roll-axis are
highly related to the hand MCP joints. This is the reason
why the hand MCP joint features are used for 3D rotations
of all body joints, not restricted to 3D wrist rotations.

SMPL-X shape/camera parameters. The shape parame-
ter βb ∈ R10 and 3D global translation vector tb ∈ R3 are
predicted from the image feature Fb using the GAP and a
single fully-connected layer.

Hands and face boxes. The BodyNet predicts hand and
face bounding boxes by concatenating the image feature Fb

and 3D heatmap Hb and passing it to two convolutional lay-
ers. The 3D heatmap Hb is predicted for the 3D positional
pose of the body joints. The box centers are obtained by
applying the soft-argmax [27] to the output of the two con-
volutional layers. The widths and heights of the boxes are
computed by performing bilinear interpolation to Fb at the
box centers and passing the features of each box center to
two fully-connected layers.
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3.3. HandNet

Like the BodyNet, the HandNet outputs 3D finger rota-
tions θh ∈ R15×3 using Pose2Pose. HandNet takes a hand
image Ih, cropped and resized from the high-resolution hu-
man image I by applying RoIAlign [9] at the predicted hand
bounding box area. Taking the hand images from the high-
resolution image I instead of the downsampled human im-
age Ib allows HandNet to utilize detailed finger information.
The hand-cropped images of the left hands are flipped to the
right hands before being fed to the HandNet. After predict-
ing the 3D finger rotations, we flip back the outputs of the
flipped left hands. We denote the 3D finger rotations of the
left and right hands as θrh and θlh, respectively.
MCP joints features to the BodyNet. As described in Sec-
tion 3.2, we pass vm ∈ R3∗8+512∗8, a concatenation of
the 3D coordinates and features of eight MCP joints (i.e.,
four from the right hand and four from the left hand) to the
BodyNet for the accurate 3D wrist rotation prediction. To
this end, we take the joint features and 3D coordinates of
MCP joints of the left and right hands from the outputs of
Pose2Pose. The taken 3D coordinates and joint features are
concatenated and flattened to a vector vm ∈ R3∗8+512∗8,
which is passed to the BodyNet. Among hand joints, we
choose the MCP joints as they show low positional errors
than other hand joints while providing essential 3D wrist
rotation information.

3.4. FaceNet

We design FaceNet as a simple GAP-based regressor in-
stead of Pose2Pose architecture as deformations of human
faces (e.g., facial expressions) are not fully modeled by the
3D joint rotations. The FaceNet predicts 3D jaw rotation
θf ∈ R3 and facial expression code ψ ∈ R10 from a face-
cropped image If ∈ R3×192×192. The face-cropped image
is cropped and resized from the high-resolution human im-
age I by applying RoIAlign [9] at the predicted face bound-
ing box area to utilize detailed face information. We use
ResNet after removing the GAP and fully-connected layer
of the last part of the original ResNet.

3.5. Loss functions

Our framework is trained in an end-to-end manner by
minimizing the loss function L, defined as follows.

L = Lparam + Lcoord + Lbox, (1)

where Lparam is a L1 distance between predicted and GT
SMPL-X parameters. Lcoord is a L1 distance between pre-
dicted and GT joint coordinates, and three types of joint co-
ordinates are used to calculate the loss function: 1) 3D joint
coordinates from the Pose2Pose of body and hands, 2) 3D
joint coordinates, obtained by multiplying a joint regression
matrix of SMPL-X to the 3D mesh, and 3) 2D joint coordi-
nates, obtained by projecting the 3D coordinates from the

3D mesh, to the 2D space using the perspective projection.
For the projection, the predicted 3D global translation vec-
tor tb, fixed focal length (5000,5000), and fixed principal
points (i.e., a center point of Ib) are used, following [16].
Finally, Lbox is a L1 distance between the predicted and GT
center and scale of the hands’ and face’s boxes.

4. Implementation details

PyTorch [22] is used for implementation. The ResNet of
the body branch is initialized with that of Xiao et al. [31],
pre-trained on MSCOCO 2D human body pose dataset. For
the training, we use Adam optimizer [15] with a mini-batch
size of 96. Data augmentations, including scaling, rotation,
random horizontal flip, and color jittering, are performed
during the training. All the 3D rotations are initially pre-
dicted in the 6D rotational representation of [33] and con-
verted to the 3D axis-angle rotations. The initial learning
rate is set to 10−4 and reduced by a factor of 10 at the 10th

epoch. A neutral gender SMPL-X model is used for the
training and testing. All other details will be available in
our codes.

5. Experiment

5.1. Datasets and evaluation metrics

Datasets. For the training, Human3.6M [11], the whole-
body version of MSCOCO [12], MPII [1], and Frei-
HAND [36] are used. The 3D pseudo-GTs for the train-
ing are obtained by NeuralAnnot [19]. For the 3D body-
only, 3D hand-only, and 3D face-only evaluations, we use
3DPW [29], FreiHAND [36], and Stirling [6], respec-
tively. For the 3D whole-body evaluation, we use EHF [24]
and AGORA [23]. We provide qualitative results on the
MSCOCO validation set.

Evaluation metrics. Mean per joint position error
(MPJPE) and mean per-vertex position error (MPVPE) are
used to evaluate 3D joint and mesh vertices positions, re-
spectively. Each calculates the average 3D joint distance
(mm) and 3D mesh vertex distance (mm) between the pre-
dicted and GT, after aligning a root joint translation. The
pelvis is used as the root joint when calculating the 3D er-
rors of the whole body and body. On the other hand, the
wrists and neck are used as the root joints when calculat-
ing the 3D errors of the hands and face. PA MPJPE and
PA MPVPE further align a rotation and scale. The 3D joint
coordinates for the MPJPE and PA MPJPE are obtained by
multiplying a joint regression matrix, defined in SMPL-X,
to the mesh, following previous works [4]. We report aver-
age 3D errors of the left and right hands for the 3D hands’
error.
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Figure 5. Qualitative comparison of models that doese not take and take hand MCP joint features for the 3D wrist rotation. Utilizing MCP
features improves the 3D wrist rotation significantly.

Inputs for 3D wrist prediction MPVPE (Hands)
Body 50.4

Body + Hand GAP 43.1
Body + All hand joints 43.4

Body + MCP joints (Ours) 39.8
Table 1. Comparison of hands MPVPEs, obtained by models that
predict 3D wrist rotation from various features, on EHF.

5.2. Ablation study

MCP joint features for 3D wrist rotations. Table 1 and
Figure 5 show that Hand4Whole produces accurate 3D wrist
rotations by taking a combination of body and hand MCP
joint features. The hand MPVPE is measured by separating
3D hand meshes from a whole-body mesh without rotation
alignment; therefore, wrong 3D wrist rotation significantly
increases the MPVPE of hands. To analyze the effective-
ness of the hand MCP joint features, we design three vari-
ants. They have exactly the same network architectures as
ours except the BodyNet that predicts 3D body joint rota-
tions including 3D wrist rotations. In their BodyNet, they
take the same body feature (i.e., a combination of 3D joint
coordinates and joint features of the body) and different
hand features. Please note that the body feature is essential
for plausible 3D wrist rotations when hands are occluded,
as shown in Figure 2. As they have the same HandNet ar-
chitecture, all of them have similar 3D finger rotation pre-
dictions. Therefore, most of the hand errors are from wrist
rotations, not from finger rotations.

The first variant uses only the body features for the 3D
wrist rotation like Zhou et al. [34]. It suffers from inac-
curate 3D wrist rotation, which indicates additional hand
feature is necessary to determine 3D wrist rotation accu-
rately. The second variant uses a combination of the body
feature and hand global average pooled (GAPed) feature

Settings PA MPVPE (Hands)
With body features 12.3

Without body features (Ours) 10.8
Table 2. Comparison of hands PA MPVPEs, obtained by models
that predict 3D finger rotations with and without the coarse hand
information, on EHF.

Inputs for 3D joint rotations PA MPVPE (All)
GAP feat. 54.8
Joint feat. 52.2

2D joint coord. 55.8
3D joint coord. 54.3

3D joint coord. + joint feat. (Ours) 50.3
Table 3. Comparison of whole-body PA MPVPEs, obtained by
models that take various input combinations for the 3D joint rota-
tion prediction, on EHF.

for 3D wrist rotation prediction like PIXIE [5]. The hand
GAP feature is obtained by performing GAP at the out-
put of HandNet’s ResNet. It still produces less accurate
3D wrist rotation than ours, which indicates that the hand
GAP feature fails to capture essential information of the
3D wrist rotations. The third variant uses a combination
of the body features and 3D joint coordinates and joint fea-
tures of all two hand joints for 3D wrist rotation prediction.
It still achieves worse results than ours because the joint
features of all two hand joints (i.e., 40 finger joints) con-
tain too much unnecessary information considering that the
body consists of 25 joints. From an anatomical point of
view, eight MCP joints of two hands mainly contribute to
the 3D wrist rotation, as shown in Figure 1, while other fin-
ger joints often move independently with the 3D body joint
rotation. Our Hand4Whole achieves the lowest 3D errors
and accurate 3D wrist rotation by taking body and MCP
joint features.
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Methods
PA MPVPE MPVPE

All Hands Face All Hands Face
ExPose [4] 54.5 12.8 5.8 77.1 51.6 35.0

FrankMocap [25] 57.5 12.6 - 107.6 42.8 -
PIXIE [5] 55.0 11.1 4.6 89.2 42.8 32.7

Hand4Whole (Ours) 50.3 10.8 5.8 76.8 39.8 26.1
Table 4. 3D errors comparison on EHF.

Methods
PA MPVPE MPVPE

All Hands Face All Hands Face
ExPose [4] 88.0 12.1 4.8 219.8 115.4 103.5

FrankMocap [25] 90.6 11.2 4.9 218.0 95.2 105.4
PIXIE [5] 82.7 12.8 5.4 203.0 89.9 95.4

Hand4Whole (Ours) 73.2 9.7 4.7 183.9 72.8 81.6
Table 5. 3D errors comparison on AGORA.

Removing body features for 3D finger rotations. Table 2
shows that removing the body feature produces better 3D
finger rotations. The setting that uses the body feature is
similar to previous works [5, 34]. As PA MPVPE is cal-
culated after the rotation alignment, aligned outputs have
almost correct 3D wrist rotations. Therefore, most of the
3D errors come from 3D fingers. To analyze how the body
feature affects the 3D finger rotation, we design a variant
whose HandNet takes additional coarse hand information,
obtainable from hand areas at the body feature. To ex-
tract the coarse hand information, we perform RoIAlign [9]
to the output of the first residual block in the BodyNet’s
ResNet using the predicted hand bounding box. Then, the
output of RoIAlign is added in an element-wise manner to
the first residual block in the HandNet’s ResNet. The reason
why only removing the body feature produces better 3D fin-
ger rotation is that the coarse hand information in the body
feature contains various unnecessary information, such as
body and backgrounds, while barely having finger informa-
tion due to the small resolution of hands. As such unneces-
sary information corrupts the hand feature of the HandNet,
using only the hand feature from the HandNet like 3D hand-
only reconstruction methods [2, 17, 35], produces better 3D
finger rotations.
Effectiveness of joint features. Table 3 shows that the joint
feature of our Pose2Pose is much more beneficial than pre-
vious GAPed feature [4, 5, 25]. In addition, combining the
joint feature with 3D joint coordinates like ours achieves
the best results. For the demonstration, we designed four
variants that take different combinations of features for the
3D body and hand joint rotation prediction. The first and
second variants take a GAP feature vector and joint feature,
respectively. The GAP feature is obtained by performing
GAP to the output of ResNet. As GAP marginalizes the
spatial domain, the feature vector losses detailed human ar-
ticulation information. On the other hand, our joint feature
preserves such detailed articulation information by inter-
polating human joint positions, beneficial for accurate 3D

Methods MPJPE PA MPJPE
* Body-only methods

HMR [14] 130.0 81.3
SPIN [16] 96.9 59.2

Pose2Mesh [3] 88.9 58.3
I2L-MeshNet [20] 93.2 57.7

ROMP [28] 91.3 54.9
* Whole-body methods

ExPose [4] 93.4 60.7
FrankMocap [25] - 61.9

PIXIE [5] - 61.3
Hand4Whole (Ours) 86.6 54.4
Table 6. 3D body error comparison on 3DPW.

Methods PA errors F scores
* Hand-only methods

FreiHAND [36] 10.7 / - 0.529 / 0.935
Pose2Mesh [3] 7.8 / 7.7 0.674 / 0.969

I2L-MeshNet [20] 7.6 / 7.4 0.681 / 0.973
METRO [18] 6.7 / 6.8 0.717 / 0.981

* Whole-body methods
ExPose [4] 11.8 / 12.2 0.484 / 0.918

Zhou et al. [34] - / 15.7 - / -
FrankMocap [25] 11.6 / 9.2 0.553 / 0.951

PIXIE [5] 12.1 / 12.0 0.468 / 0.919
Hand4Whole (ResNet-18) 8.6 / 8.6 0.621 / 0.962

Hand4Whole (Ours) 7.7 / 7.7 0.664 / 0.971
Table 7. 3D hand errors (PA MPVPE/PA MPJPE and F-
score@5mm/15mm) comparison on FreiHAND.

joint rotation prediction. The third and fourth variants take
2D and 3D joint coordinates, respectively. Compared to the
third variant, the fourth variant achieves lower PA MPVPE
by utilizing additional depth information. Finally, we com-
bine the 3D joint coordinates and joint features for the best
results.

5.3. Comparison with state-of-the-art methods

EHF (Whole-body evaluation benchmark). Table 4
shows that our Hand4Whole largely outperforms all previ-
ous whole-body methods on EHF. As existing works mainly
have reported PA metrics, we use their released codes and
pre-trained weights to report MPVPEs.
AGORA (Whole-body evaluation benchmark). Table 5
shows that our Hand4Whole largely outperforms all previ-
ous whole-body methods on AGORA. We obtained all num-
bers using their released codes with pre-trained weights and
an official evaluation tool2. We use the same human bound-
ing boxes for all methods.
3DPW (Body-only evaluation benchmark). Table 6
shows that our Hand4Whole largely outperforms all previ-

2https://github.com/pixelite1201/agora evaluation
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Hand4Whole (Ours) ExPoseInput image FrankMocap PIXIE
Figure 6. Qualitative comparison of the proposed Hand4Whole, ExPose [4], FrankMocap [25], and PIXIE [5]. Implausible 3D wrist
rotations are highlighted.

ous whole-body methods on 3DPW, although it is slightly
beaten by recent body-only methods. The stronger perfor-
mance on the 3D body benchmark than previous whole-
body methods results from a combination of 3D joint co-
ordinates and joint features for the 3D body joint rotation
prediction. On the other hand, all previous whole-body
methods use GAP features for the 3D body joint rotation
prediction.
FreiHAND (Hand-only evaluation benchmark). Table 7
shows that our Hand4Whole largely outperforms all pre-
vious whole-body methods on FreiHAND, although it is
slightly beaten by recent hand-only methods. We obtained
the results of FrankMocap using their released codes and
pre-trained weights as they did not report their results on
FreiHAND. In particular, Hand4Whole achieves the best
results even after changing our hand branch ResNet-50 to
ResNet-18 following ExPose [4].
MSCOCO (Qualitative comparison of the whole-body).
Figure 6 shows that our Hand4Whole produces much more
accurate 3D wrists and finger rotations than previous whole-

body methods.
Overall, Hand4Whole largely outperforms all previous

whole-body methods. In particular, it produces much better
3D hand results. The comparisons are consistent with the
results of the ablation studies.

6. Conclusion

We present Hand4Whole, a whole-body 3D human mesh
estimation system that produces much better 3D hands
in the whole-body 3D mesh. Hand4Whole utilizes hand
MCP joint features for the 3D wrist rotation by introducing
Pose2Pose. In addition, it discards the body feature when
predicting 3D finger rotations. Hand4Whole largely out-
performs previous 3D whole-body human mesh estimation
methods on all benchmarks.
Acknowledgements. This work was supported in part by
IITP grant funded by the Korea government (MSIT) [No.
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