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Abstract

Multimodal emotion recognition has recently gained
much attention since it can leverage diverse and comple-
mentary modalities, such as audio, visual, and biosignals.
However, most state-of-the- art audio-visual (A-V) fusion
methods rely on recurrent networks or conventional atten-
tion mechanisms that do not effectively leverage the com-
plementary nature of A-V modalities. This paper focuses
on dimensional emotion recognition based on the fusion
of facial and vocal modalities extracted from videos. We
propose a joint cross-attention fusion model that can ef-
fectively exploit the complementary inter-modal relation-
ships, allowing for an accurate prediction of valence and
arousal. In particular, this model computes cross-attention
weights based on the correlation between joint feature rep-
resentations and individual modalities. By deploying a joint
A-V feature representation into the cross-attention module,
the performance of our fusion model improves significantly
over the vanilla cross-attention module. Experimental re-
sults1 on the AffWild2 dataset highlight the robustness of
our proposed A-V fusion model. It has achieved a concor-
dance correlation coefficient (CCC) of 0.374 (0.663) and
0.363 (0.584) for valence and arousal, respectively, on the
test set (validation set). This represents a significant im-
provement over the baseline for the third challenge of Af-
fective Behavior Analysis in-the-Wild 2022 (ABAW3) com-
petition, with a CCC of 0.180 (0.310) and 0.170 (0.170).

1. Introduction
Emotion recognition (ER) is a challenging problem since

the expressions linked to human emotions are extremely di-
verse across individuals and cultures. It has been exten-

1The code is available on GitHub: https://github.com/
praveena2j/JointCrossAttentional-AV-Fusion.

Figure 1. The valence-arousal space.

sively researched in various fields such as neuroscience,
psychology, cognitive science, and computer science, lead-
ing to the advancement of a wide range of applications
in, e.g., health care (e.g., assessment of anger, fatigue, de-
pression, and pain), robotics (human-machine interaction),
driver assistance (assessment of a driver’s state), etc. [1].
ER problems can be formulated according to either a cat-
egorical or a dimensional model of emotions. In the cate-
gorical model, human emotions have been categorized into
anger, disgust, fear, happy, sad, and surprise [2]. Subse-
quently, contempt has been added to these six basic emo-
tions [3]. This categorical model of ER has been explored
extensively in the field of affective computing due to its sim-
plicity and universality. In the dimensional model, a wide
range of human emotions can be analyzed on a continu-
ous scale, where emotions can be projected onto the di-
mensions of valence and arousal [4]. Figure 1 illustrates
the use of a two-dimensional space to represent emotional
states, where valence and arousal are employed as dimen-
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sional axes. Valence reflects the wide range of emotions in
the dimension of pleasantness, from being negative (sad) to
positive (happy). In contrast, arousal spans a range of inten-
sities from passive (sleepiness) to active (high excitement).

Dimensional modeling of emotions is more challenging
than the categorical case since it is difficult to obtain a con-
tinuous scale of annotations compared to discrete emotions.
Given the continuous range of emotions, the annotations
tend to be noisy and ambiguous. Several databases, such
as RECOLA [5], SEWA [6], SEMAINE [7], etc., have been
introduced for the task of dimensional ER. Depending on
the video capture conditions, i.e., controlled or in-the-wild
environments, this task can present different challenges due
to poor illumination, pose variations, and background noise.
Recently, Kollias et al. [8] introduced the Affwild2 dataset,
which is the largest in-the-wild database for the dimensional
ER task. Affwild2 is also provided with the annotations for
the tasks of expression classification and action unit detec-
tion. This dataset has previously been used for challenges
hosted in conjunction with CVPR 2017 [9], FG 2020 [10],
and ICCV 2021 [11]. Several approaches have been pro-
posed for previous challenges in the framework of multi-
task learning [12–15]. In continuation with the previous
challenges, the third competition was held in conjunction
with CVPR 2022 [16] with an exclusive challenge track for
valence and arousal estimation.

This paper investigates the prospect of leveraging the
complementary relationship between audio (A) and video
(V) modalities in videos using a joint cross attentional
framework. Facial expressions are one of the most dom-
inant channels to express human emotions. It has been
shown that only one-third of human communication is con-
veyed through verbal components, while two-thirds of com-
munication occurs through non-verbal components [17].
Voice also serves as a major cue in conveying human emo-
tions as it often carries complementary information with the
V modality. For instance, we can still leverage the A modal-
ity to estimate the emotional state when the facial modality
is missing due to pose, blur, low illumination, etc. Similarly,
when we have silent regions in the A modality, we can lever-
age the rich information in the V modality. In most of the
existing approaches, A-V fusion is often achieved by con-
catenating the A and V features, which may degrade system
performance [18]. Therefore, designing a fusion mecha-
nism based on A and V features that can effectively lever-
age their complementary relationships is pivotal in improv-
ing the accuracy and robustness of multimodal ER systems
over uni-modal approaches.

Several ER approaches have been proposed for video-
based dimensional ER using convolutional neural networks
(CNNs) to obtain the deep learning (DL) features, along
with recurrent neural networks (RNNs) to capture the tem-
poral dynamics [18, 19]. DL models have also been widely

explored for vocal emotion recognition, typically using
spectrograms with 2D-CNNs [19, 20], or raw waveforms
with 1D-CNNs [18]. In most of the existing approaches
for dimensional ER [18, 21], A-V fusion is performed by
concatenating the deep features extracted from individ-
ual facial and vocal modalities, and then fed to a Long
Short Term Memory Networks (LSTM) for predicting va-
lence and arousal. Although LSTM-based fusion models
the spatio-temporal and intra-modal relationships, and can
thereby improve system performance, it does not effectively
capture the inter-modal relationships across the individual
modalities. Therefore, we investigate the benefits of extract-
ing more contributive features across A and V modalities to
leverage their complementary temporal relationships.

Attention mechanisms have recently gained much inter-
est in the computer vision and machine learning communi-
ties, allowing to extract task-relevant features, and thereby
improve system performance. However, most of the ex-
isting attention-based approaches for dimensional ER ex-
plore the intra-modal relationships [22]. Although a few
approaches attempt to capture the cross-modal relation-
ships using cross-attention based on transformers [21, 23],
they do not effectively leverage the complementary rela-
tionship of A-V modalities. Indeed, their computation of
attention weights does not consider the correlation among
the A and V features. Recently, Praveen et al. [24] pro-
posed a cross-attentional model for dimensional ER based
on A-V fusion, and showed significant improvements on
the RECOLA dataset [5] over state-of-the-art methods by
leveraging the complementary relationships of A and V
modalities. This paper introduces joint modeling of intra-
and inter-modal relationships into a cross attentional frame-
work. The cross-correlation is computed between the joint
A-V feature representation, and the features of individual
modalities. We show that deploying joint representation
into the cross-attentional module can significantly improve
the modeling of cross-modal relationships over the vanilla
cross attentional model [24], while reducing the hetero-
geneity across modalities on the challenging in-the-wild Af-
fwild2 dataset [8].

The main contributions of the paper are as follows. (1)
A joint cross-attentional model is proposed for A-V fusion
based on the joint modeling of intra- and inter-modal re-
lationships, which effectively captures the complementary
relationships across A and V modalities along with intra-
modal relationships. Specifically, we use joint A-V feature
representations to attend to the other modality (as well as
itself) based on the attention weights computed from the
cross-correlation between the individual features and joint
representation. (2) The effectiveness of the proposed ap-
proach is analyzed through an extensive set of experiments
and ablation studies on the Affwild2 dataset.

The rest of this paper is organized as follows. Section 2
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provides a critical analysis of the relevant literature on di-
mensional ER and attention models for A-V fusion. Section
3 describes the proposed joint cross-attentional A-V fusion
model. Sections 4 and 5 present the experimental method-
ology for validation and results obtained with the proposed
approach, respectively.

2. Related Work
2.1. A-V Fusion Based Emotion Recognition

One of the primitive approaches using DL models for
A-V fusion-based dimensional ER was proposed by Tzi-
rakis et al. [18], where A and V features, obtained from
ResNet50 and 1D-CNN, respectively, are concatenated and
fed to Long short-term memory model (LSTM). Juan et al.
[25] presented an empirical study of fine-tuning several lay-
ers of pretrained CNN models for V modality and used con-
ventional A features for fusion. Nguyen et al. [26] proposed
a DL model of two-stream auto-encoders and LSTM to si-
multaneously learn compact representative features from A
and V modalities for dimensional ER. Schonevald et al.
[19] explored knowledge distillation using a teacher-student
model for V modality, and a CNN model for A modality
using spectrograms, and combined them RNNs. Deng et al.
[27] proposed an iterative self distillation method for mod-
eling the uncertainties in the labels in a multi-task frame-
work. Kuhnke et al. [28] proposed a two-stream A-V net-
work, where V features are extracted from the R(2plus1)D
model pretrained from an action recognition dataset, and A
features are obtained from the Resnet18 model. Wang et
al. [20] further improved their approach [28] by introduc-
ing a teacher-student model in a semi-supervised learning
framework. The teacher model is trained on the available
labels, which are further used to obtain pseudo labels for un-
labeled data. The pseudo labels are finally used to train the
student model, used for the final prediction. Though the ap-
proaches mentioned above have shown significant improve-
ment for dimensional ER, they fail to effectively capture the
inter-modal relationships and relevant salient features spe-
cific to the task. Therefore, we have focused on capturing
the comprehensive features in a complementary fashion us-
ing attention mechanisms.

2.2. Attention Models for A-V Fusion

Attention models for A-V fusion have been widely ex-
plored in modeling intra- and inter-modal relationships be-
tween A-V modalities for various applications such as A-
V event localization [29], action localization [30], emotion
recognition [23], etc. Zhang et al. [31] proposed an atten-
tive fusion mechanism, where multi-features are obtained
from 3D-CNNs and 2D-CNNs for V modality, and from
2D-CNNs using spectrograms for A modality. The ob-
tained A and V features are further re-weighted using scor-

ing functions based on the relevant information in the indi-
vidual modalities. Recently, cross-modal attention is found
to be promising as effective modeling of inter-modal re-
lationships significantly improves the system performance.
Srinivas et al. [23] explored transformers with encoder lay-
ers, where cross-modal attention is deployed to integrate
A and V features for dimensional ER. Tzirakis et al. [21]
investigated self-attention as well as cross-attention fusion
based on transformers to enable the extracted features of
different modalities to attend to each other. Although these
approaches have explored cross-modal attention with trans-
formers, they fail to leverage semantic relevance among
the A-V features based on cross-correlation. Zhang et al.
[32] investigated the prospect of improving the fusion per-
formance over individual modalities and proposed leader-
follower attentive fusion for dimensional ER. The obtained
features are encoded, and attention weights are obtained by
combining the encoded A and V features. These weights
are further attended to on the V features and concatenated
to the original V features for final prediction.

Unlike prior approaches, we advocate for a simple yet
efficient joint cross-attentional model based on joint model-
ing of intra- and inter-modal relationships between A and V
modalities. Cross-attention has been successfully applied in
several applications, such as weakly-supervised action lo-
calization [30], few-shot classification [33] and dimensional
ER [34]. In most cases, cross-attention has been applied
across the individual modalities. Praveen et al. [24] have
shown significant improvements using cross attention based
on cross-correlation across the individual features. How-
ever, we have explored joint attention between individual
and combined A-V features. By deploying the joint A-V
feature representation, we can effectively capture the intra-
and inter-modal relationships simultaneously by allowing
interactions across the modalities and oneself. Recently,
joint co-attention has also been explored by Duan et al. [29]
in a recursive fashion for A-V event localization and found
to be promising in obtaining robust multimodal feature rep-
resentations. In this paper, joint (combined) A-V features
are extracted through cross-attention, where the features
of each modality attend to themselves, as well as those of
the other modality through cross-correlation of the concate-
nated A-V features and features of individual modalities.
The proposed approach can significantly improve system
performance by effectively leveraging the joint modeling of
intra- and inter-modal relationships.

3. Proposed Approach

3.1. Visual Network

Facial expressions in videos carry rich information per-
tinent to both appearance and temporal dynamics, which
plays a crucial role in understanding a person’s emotions
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[35]. Therefore, these spatial and temporal cues must
be efficiently modeled to obtain robust feature represen-
tations suitable for ER. In recent years, DL models have
been widely explored for analyzing facial expressions in
videos. In most of these approaches [36, 37], 2D-CNN has
been used in conjunction with RNNs to capture the spatial
and temporal dynamics, respectively. 3D-CNNs have also
been widely explored, especially for action recognition, and
found to be promising in simultaneously capturing the spa-
tial and temporal dynamics. Inspired by the performance of
3D-CNNs, authors in [38] explored R(2plus1)D networks
pretrained on the Kinetics-400 action recognition dataset
[20,28]. It has outperformed conventional 2D-CNNs for di-
mensional ER on Affwild2 dataset. Recently, Inflated 3D-
CNNs (I3Ds) [39] have provided significant improvement
on action recognition data with fewer parameters than con-
ventional 3D-CNNs, while being able to exploit the weights
of several pre-trained 2D-CNN models. However, it fails
to capture the long-term temporal dependencies. Temporal
convolutional networks (TCN) were found to be efficient in
capturing the long-term temporal dependencies [32]. There-
fore, we have considered I3D with TCN to leverage both
long- and short-term temporal dynamics. We have also ex-
plored other V backbones, such as the R(2plus1)D network
pretrained on the Kinetics-400 dataset [20, 28], and ResNet
CNNs with GRU to obtain V features and validate our fu-
sion model (see implementation details in Section 4).

3.2. Audio Network

Several low-level descriptors such as prosodic, excita-
tion, Mel-Frequency Cepstral Coefficients (MFCCs), and
spectral descriptors have commonly been used as feature
representations for the A modality in ER [25, 40]. With
the advent of DL models, the performance of speech ER
has been significantly improved using 1D-CNNs on raw A
signals [18] or 2D-CNN models on spectrograms [19, 20].
Compared to 1D-CNNs, 2D-CNNs using spectrograms
have been widely explored in the literature of speech ER,
as it was found to carry significant para-lingual informa-
tion about the affective state of a person [41]. Various 2D-
CNN architectures such as VGGish [32] and Resnet18 [42]
have been used to obtain robust feature representations of
A modality for ER. Given the ubiquitous usage of spectro-
grams for extracting effective feature representations perti-
nent to the affective state of a person, we have also used
spectrograms with 2D-CNNs in our framework to validate
the proposed fusion model (see implementation details in
Section 4).

3.3. Joint Cross-Attentional A-V-Fusion

Though A-V fusion can be achieved through unified
multimodal training, it was found that simultaneous train-
ing of multimodal networks often declines over that of in-

dividual modalities [43]. This can be attributed to several
factors, such as differences in learning dynamics for A and
V modalities [43], different noise topologies, with some
modality streams containing more or less information for
the task at hand, as well as specialized input representa-
tions [44]. Therefore, we have trained DL models for the
individual A and V modalities independently to extract A
and V features, fed to the joint cross-attentional module for
A-V fusion that outputs final valence and arousal predic-
tions.

The V modality carries more relevant information in
some video clips for a given video sequence, whereas the
A modality might be more relevant for others. Since mul-
tiple modalities convey diverse information for valence and
arousal, their complementary relationship needs to be ef-
fectively captured. To reliably combine these modalities,
we rely on a cross-attention-based fusion mechanism to en-
code the inter-modal information efficiently while preserv-
ing the intra-modal characteristics. Though cross-attention
has been conventionally applied across the features of indi-
vidual modalities, we used cross-attention in a joint learning
framework. Specifically, our joint A-V feature representa-
tion is obtained by concatenating the A and V features to
attend to the individual A and V features. By using the joint
representation, features of each modality attend to them-
self and the other modality, helping to capture the semantic
inter-modal relationships across A and V. The heterogeneity
among A and V modalities can also be drastically reduced
by using the combined feature representation in the cross-
attentional module, which further improves system perfor-
mance. A block diagram of the proposed model is shown in
Figure 2.
A) Training mode: Let Xa and Xv represent two sets
of deep feature vectors extracted for A and V modali-
ties in response to a given input video sub-sequence S of
fixed size, where Xa = {x1

a,x
2
a, ...,x

L
a} ∈ Rda×L and

Xv = {x1
v,x

2
v, ...,x

L
v} ∈ Rdv×L. L denotes the num-

ber of non overlapping fixed-size clips sampled uniformly
from S, da and dv represents the feature dimension of A
and V representations, xl

a and xl
v denotes A and V feature

vectors, respectively, for l = 1, 2, ..., L clips.
As shown in Figure 2, the joint representation of A-V

features, J , is obtained by concatenating the A and V fea-
ture vectors: J = [Xa;Xv] ∈ Rd×L, where d = da + dv
denotes the feature dimension of concatenated features.
This A-V feature representations (J ) of the given video sub-
sequence (S) is now used to attend to unimodal feature rep-
resentations Xa and Xv. The joint correlation matrix Ca

across the A features Xa, and the combined A-V features
J are given by:

Ca = tanh

(
X⊤

a W jaJ√
d

)
(1)
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Figure 2. An overview of the proposed joint cross-attention model for A-V fusion (training mode).

where W ja ∈ RL×L represents learnable weight matrix
across A and joint A-V features. Similarly, the joint corre-
lation matrix for V features is given by:

Cv = tanh

(
X⊤

vW jvJ√
d

)
(2)

The joint correlation matrices Ca and Cv for A and
V modalities provide a semantic measure of relevance not
only across the modalities but also within the same modal-
ity. A higher correlation coefficient of the joint correlation
matrices Ca and Cv shows that the corresponding samples
are strongly correlated within the same modality as well as
the other modality. Therefore, the proposed approach can
efficiently leverage the complementary nature of A and V
modalities (i.e., inter-modal relationships) and intra-modal
relationships, thereby improving the system’s performance.
After computing the joint correlation matrices, the attention
weights of A and V modalities are estimated.

Since the dimensions of joint correlation matrices
(Rda×d) and the features of the corresponding modality
(RL×da ) differ, we rely on different learnable weight ma-
trices corresponding to features of the individual modali-
ties to compute attention weights of the modalities. For the
A modality, the joint correlation matrix Ca and the corre-
sponding A features Xa are combined using the learnable
weight matrices W ca and W a respectively to compute the
attention weights of the A modality, which is given by:

Ha = ReLu(W aXa + W caC
⊤
a ) (3)

where W ca ∈ Rk×d, W a ∈ Rk×L and Ha represents the
attention maps of the A modality. Similarly, the attention
maps (Hv) of the V modality are obtained as

Hv = ReLu(W vXv + W cvC
⊤
v ) (4)

where W cv ∈ Rk×d, W v ∈ Rk×L.
Finally, the attention maps are used to compute the at-

tended features of A and V modalities. These features are
obtained as:

Xatt,a = W haHa +Xa (5)

Xatt,v = W hvHv +Xv (6)

where W ha ∈ Rk×L and W hv ∈ Rk×L denote the learn-
able weight matrices, respectively. The attended A and V
features, Xatt,a and Xatt,v are further concatenated to ob-
tain the A-V feature representation, which is given by:

Xatt = [Xatt,v;Xatt,a] (7)

Finally, the A-V features are fed to the fully connected lay-
ers for the predictions of valence or arousal.

The concordance correlation coefficient (ρc) has been
widely used in the literature to measure the level of agree-
ment between the predictions (x) and ground truth (y) anno-
tations for dimensional ER [18]. Let µx, and µy represent
the mean of predictions and ground truth, respectively. Sim-
ilarly, if σ2

x and σ2
y denote the variance of predictions and

ground truth, respectively, then ρc between the predictions
and ground truth is:

ρc =
2σ2

xy

σ2
x + σ2

y + (µx − µy)2
(8)

where σ2
xy denotes the covariance between predictions and

ground truth. Although MSE has been widely used as a
loss function for regression models, we use L = 1 − ρc
since it is standard and common loss in the dimensional ER
literature [18]. The parameters of our A-V fusion model
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(W ca, W a, W cv, W v, W ha, and W hv) are optimized
according to this loss.
B) Test mode: A continuous video sequence is an input
to our model during inference. Feature representations xl

a

and xl
v are extracted by A and V backbones for succes-

sive input clips and spectrograms and fed to the A-V fusion
model for the prediction of valence and arousal. In addi-
tion, arousal and valence predictions may be produced us-
ing multiple diverse A and V backbones that are combined
through feature-level fusion or multiple A-V fusion models
that are combined through decision-level fusion (see imple-
mentation details in Section 4).

4. Experimental Methodology
4.1. Dataset

Affwild2 is the most extensive database in affective com-
puting captured from YouTube under extremely challeng-
ing environments. Though the dataset is provided with an-
notations for the tasks of expression classification, action
unit detection, and valence-arousal, we have focused on the
problem of estimating valence-arousal in this work. For the
track of valence-arousal estimation challenge, there are 567
videos with the annotations of valence and arousal. Six-
teen of these video clips display two subjects, both of which
have been annotated. The annotations are provided by four
experts using a joystick, and the final annotations are ob-
tained as the average of the four raters. There are 2, 786, 201
frames with 455 subjects, of which 277 are male and 178 fe-
male. The annotations for valence and arousal are provided
continuously in the range of [-1, 1]. Some of the frames in
some videos are not annotated. So we discard those frames.
The dataset is split into the training, validation, and test sets.
The partitioning is subject-wise so that every subject’s data
will be present in only one subset. The partitioning pro-
duces 341, 71, and 152 training, validation, and test videos,
respectively.

4.2. Implementation Details

For the V modality, we have used the cropped, and
aligned images provided by the challenge organizers [11].
For the missing frames in the V modality, we have consid-
ered black frames (i.e., zero pixels). Faces are resized to
224x224 to be fed to the I3D network. The videos are con-
verted to sub-sequences, which are sampled uniformly to
obtain non-overlapping fixed-size clips. The subsequence
length and the clip length of the videos are considered to
be 64 and 8 respectively, obtained by down-sampling a se-
quence of 256 frames by 4. Therefore, we have eight clips
in each sub-sequence, resulting in 196, 265 training samples
and 41, 740 validation samples, and 92, 941 test samples.
The I3D model was pre-trained on the ImageNet dataset
and inflated to a 3D-CNN using Affwild2 videos of facial

expressions. Dropout is used with p = 0.8 on the linear
layers to regularize the network. The initial learning rate
was set to 1e − 3, and momentum of 0.8 is used for SGD.
Weight decay of 5e−4 is used. Here again, the batch size of
the network is set to 8. Data augmentation is performed on
the training data through random cropping, which produces
a scale-invariant model. The number of epochs is set to 50,
and early stopping is used to obtain the weights of the best
model.

For the A modality, the vocal signal is extracted from the
corresponding video and re-sampled to 44, 100Hz, which
is further processed to extract short vocal segments cor-
responding to a clip size of 32 frames of the V network.
The clips and sub-sequences of V clips are ensured to be
properly synchronized with that of A clips. The spectro-
gram is obtained using Discrete Fourier Transform (DFT)
of length 1024 for each short clip (corresponding to 32
frames), where the window length is considered to be 20
msec and the hop length to be 10 msec. Following ag-
gregation of short-time spectra, we obtain the spectrogram
of 64×107 corresponding to each sub-sequence of the V
modality. Next, the spectrogram is converted to log-power-
spectrum, expressed in dB. Finally, mean and variance nor-
malization is performed on the spectrogram. Now the ob-
tained spectrograms are fed to the Resnet18 [42] to obtain
A features. Due to the availability of a large number of sam-
ples in the Affwild2 dataset, we trained the Resnet18 model
from scratch. To adapt to the number of channels of the
spectrogram, the first convolutional layer in the Resnet18
model is replaced by a single channel. The network is
trained with an initial learning rate of 0.001, and weights
are optimized using the Adam optimizer. The batch size is
considered to be 64, and early stopping is used to obtain the
best model for prediction.

For the A-V fusion network, the size of the concate-
nated A-V features J are set to be 1024. In the joint cross-
attention module, the initial weights of the cross-attention
matrix are initialized with the Xavier method [45], and the
weights are updated using the Adam optimizer. The initial
learning rate is set to be 0.001, and the batch size is fixed
to 64. Also, a dropout of 0.5 is applied to the attended A-
V features, and a weight decay of 5e − 4 is used for all the
experiments. Finally, feature-level (decision-level) fusion is
implemented by training a fully connected neural network
to provide a weighted fusion of feature representations (de-
cisions values) for arousal and valence predictions.

5. Results and Discussion

5.1. Ablation Study

Table 1 presents the results of our ablation study on the
validation dataset. The performance of the proposed joint
cross-attentional fusion is compared using various A and
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Table 1. Performance of our approach with different components on the development set of the Affwild2 dataset. The Resnet18 [42]
is used to extract A features in all experiments.

V Backbone Fusion Module Valence Arousal

I3D Feature Concatenation 0.531 0.468

R3D Feature Concatenation 0.517 0.493

I3D Cross-Attention [24] 0.541 0.517

I3D Leader-Follower [19] 0.592 0.521

Resnet18-GRU Joint Cross-Attention (Ours) 0.632 0.520

R3D Joint Cross-Attention (Ours) 0.642 0.592
I3D Joint Cross-Attention (Ours) 0.657 0.580

I3D-TCN Joint Cross-Attention (Ours) 0.663 0.584

I3D-TCN + R3D Joint Cross-Attention (Ours) 0.670 0.590

Table 2. CCC of the proposed approach compared to state-of-the-art methods for A-V fusion on the Affwild2 development set.

Method A and V Backbones Valence Arousal
Audio Visual Fusion Audio Visual Fusion

Kuhnke et al. [28] [FGW 2020] A: Resnet18; V: R(2plus1)D 0.351 0.449 0.493 0.356 0.565 0.604

Zhang et al. [32] [ICCVW 2021] A: VGGish; V: Resnet50-TCN - 0.405 0.457 - 0.635 0.645
Rajasekhar et al. [24] [FG 2021] A: Resnet18; V: I3D-TCN 0.351 0.417 0.552 0.356 0.539 0.531

Joint Cross-Attention (Ours) A: Resnet18; V: I3D-TCN 0.351 0.417 0.663 0.356 0.539 0.584

Joint Cross-Attention (Ours) A: Resnet18; V: I3D-TCN + R3D 0.351 - 0.670 0.356 - 0.590

V backbones and A-V fusion strategies. First, we have
implemented I3D [39] with simple feature concatenation,
where A and V features are concatenated, and fed to fully
connected layers for valence and arousal prediction. Then
we replaced I3D with R3D [38] and implemented a similar
fusion strategy of feature concatenation. R3D was found
to perform slightly better than I3D for arousal, while I3D
shows superior performance for valence. We have also com-
pared the proposed approach with other relevant attention
fusion strategies in the literature. We have compared the
backbones of I3D with that of leader-follower attention [32]
and cross-attention [24]. Compared to the vanilla cross at-
tention model, leader-follower attention was found to per-
form better.

Finally, to validate the generalization capability of the
proposed fusion model, we have implemented various V
backbones using I3D, R3D, Resnet18 with GRU, and I3D
with TCN. Though the performance of our fusion model
varies slightly with different backbones, we can observe that
our proposed fusion model can outperform other attention
strategies [24, 32], especially for valence. Compared to the
2D-CNN model (Resnet18 with GRU), the 3D-CNNs archi-
tectures are found to perform slightly better. Furthermore,
I3D provides more improvements over valence than arousal

with our fusion model when compared to R3D. By intro-
ducing TCN with I3D, the performance of the proposed
fusion model is found to perform even better since it can
more effectively capture long-term temporal cues than I3D
alone. We have further explored the feature-level fusion of
V backbones by training a full-connected network to com-
bine I3D-TCN and R3D, which shows a slight improvement
over I3D-TCN alone. Resnet18 is used as the backbone for
the A modality in all the experiments conducted above.

5.2. Comparison to State-of-Art Methods

Table 2 shows our comparative results against relevant
state-of-the-art A-V fusion models on the Affwild2 valida-
tion set submitted for the previous challenges [10,11]. Most
relevant approaches have been implemented with different
experimental protocols and training strategies. Therefore,
to have a fair comparison, we have re-implemented these
approaches according to our experimental protocol and an-
alyzed the results on the Affwild2 validation set. Similar
to our A and V backbones, Kuhnke et al. [28] also used
3D-CNNs, where the R(2plus1)D model is used for the
V modality, and the Resnet18 is used for the A modal-
ity. However, they use additional masks for the V modal-
ity and annotations of other tasks to refine the annotations
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Table 3. CCC of the proposed approach compared to state-of-the-art methods for A-V fusion on Affwild2 test set.

Method Modalities Valence Arousal Mean

Situ-RUCAIM3 [46] Audio, Visual 0.606 0.596 0.601

FlyingPigs [47] Audio, Visual, Text 0.520 0.602 0.561

PRL [48] Visual 0.450 0.445 0.448

HSE-NN [49] Visual 0.417 0.454 0.436

AU-NO [50] Audio, Visual 0.418 0.407 0.413

Joint Cross-Attention (Ours) Audio, Visual 0.374 0.363 0.369
Baseline [16] Visual 0.180 0.170 0.175

of valence and arousal. They further perform simple fea-
ture concatenation without any specialized fusion model to
predict valence and arousal. Therefore, the performance
with fusion was not significantly improved over the uni-
modal performance. Zhang et al. [32] explored the leader-
follower attention model for fusion and showed minimal
improvement in fusion performance over uni-modal per-
formances. Though they have shown significant perfor-
mance for arousal than valence, it is mostly attributed to
the V backbone. The proposed approach has shown signif-
icant improvement for fusion, especially for valence than
arousal. Even with vanilla cross attentional fusion [24], we
have shown that fusion performance for valence has been
improved better than that of [32] and [28]. By deploying
joint representation into the cross attentional fusion model,
the fusion performance of valence has been significantly im-
proved further. In the case of arousal, though the fusion per-
formance is lower than that of [32] and [28], we can observe
that it has improved over that of uni-modal V performance.
Therefore, the proposed approach effectively captures the
variations spanning a wide range of emotions (valence) than
the intensities of the emotions (arousal).

We have further compared our fusion model with that of
other valid submissions for the third ABAW challenge [16]
on the test set as shown in Table 3. The winner of the
challenge [46] also used A-V fusion and demonstrated out-
standing performance for both valence and arousal. They
used three external datasets to improve the generalization
capability of the training model and features from multiple
backbones for both V and A modalities. FlyingPigs [47]
uses the text modality along with A and V modalities and
achieved improvement over A-V fusion using the leader-
follower attention strategy. Apart from these, AU-NO [50]
is the only approach that relies on A-V fusion. They have
investigated the performance of attention mechanisms such
as self-attention and cross attention with that of recurrent
networks. They have also used additional loss components
of mean square error (MSE) and categorical cross-entropy
loss along with CCC. PRL [48] and HSE-NN [49] used only

visual modality, where [48] used ensemble-based strategy
and [49] used external AffectNet dataset [51] for better per-
formance. It is worth mentioning that we have not used any
advanced loss components or post-processing operations on
predictions using cross-validation, etc., apart from clipping
the predictions to the range of [-1,1]. We did not use any ex-
ternal dataset or features from multiple backbones for A and
V modalities. The performance of the proposed approach is
solely attributed to the efficacy of our fusion model. We
observed that the fusion performance has been significantly
improved over the uni-modal performances, especially for
valence. The proposed fusion model can be further im-
proved using the fusion of multiple A and V backbones ei-
ther through feature-level or decision-level fusion similar to
that of the winner of the challenge [46].

6. Conclusion

This work introduced joint cross-attentional for A-V fu-
sion in video-based dimensional ER, leveraging the intra-
and inter-modal relationships across A and V features. In
particular, the complementary relationship between A and
V features is efficiently captured based on the correlation
between the combined A-V features and individual A and
V features. By jointly modeling the intra- and inter-modal
relationships, features of each modality attend to the other
modality as well as itself, resulting in robust A and V fea-
ture representations. With the proposed model, A and V
backbones are first trained individually for facial (V) and
vocal (A) modalities. Then, an attention mechanism based
on the correlation between joint and individual features is
applied to obtain the attended A and V features. Finally, the
attention-weighted features are concatenated and fed to lin-
ear connected layers to predict valence and arousal values.
The proposed A-V fusion model is validated experimentally
on the challenging Affwild2 video dataset, using different
A and V backbones. The experimental results have shown
that the proposed model achieves superior multimodal per-
formance by effectively fusing A and V modalities.
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