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Abstract

The lack of large scale labelled datasets in word-level
sign language recognition (WSLR) poses a challenge to de-
tecting sign language from videos. Most WSLR approaches
operate on datasets that do not model real-world settings
very well, as they do not have a high degree of variability in
terms of signers, background, lighting and inter signer vari-
ation. We chose the MS-ASL dataset to overcome these lim-
itations as they model open-world settings very well. This
paper benchmarks successful action recognition architec-
tures on the MS-ASL dataset using transfer learning. We
have achieved new state-of-the-art accuracy (92.35%) with
an improvement of 7.03% over the previous state-of-the-art
introduced by the MS-ASL paper. We have analyzed how
action-recognition architectures fair in the task of WSLR,
and we propose SlowFast 8×8 ResNet 101 as a robust and
suitable architecture for the task of WSLR.

1. Introduction
Sign language is the primary means of communication

for the deaf and dumb community. American sign language
(ASL) uses complex fine-grained hand gestures and facial
expressions to communicate. Technological innovations on
word-level sign language recognition (WSLR) can signif-
icantly help alleviate the need for human translators and
lead to convenient communication between non-signers and
signers. Most existing approaches rely on using additional
instruments such as depth cameras [1, 2], gloves [3] or sen-
sors [4, 5]. However, such requirements limit the ease of
use in real-world settings. Deep learning methods which
are non-intrusive and purely vision-based can be beneficial
in such scenarios.
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Figure 1. Illustration of the diversity of the MS-ASL dataset,
which contains different signers, backgrounds, lighting and po-
sition of signers from camera.

Training deep neural networks requires huge volumes of
data. The spatio-temporal nature of ASL combined with its
quick gestures only makes it more essential. However, most
of the existing datasets on ASL have a very limited number
of instances per class and a limited number of signers as
shown in Table 1. This may be due to the domain-specific
knowledge required in annotating the datasets, which is
labour intensive and expensive. The limited availability
of training data severely restricts the scope of training and
evaluating WSLR models. Most of the previous works use
data with a minimal number of classes or signers generated
in lab environments, due to which they might not generalize
to real-world settings very well. We use the MS-ASL [6]
dataset to overcome these limitations as they model real-
world scenarios very well due to significant variations in
view, background, lighting, and positioning as shown in
Fig. 1. Moreover, the high number of signers compared
to other datasets and the inter-signer variations contribute
to learning more independent recognition systems that can
perform well in open-world settings.

Previous deep learning based approaches use a combi-
nation of Convolutional Neural Networks (CNNs) and Re-
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Data-set Class Videos Signers

LSA64 [7] 64 3200 10
LSE-sign [8] 2400 2400 2
GSL [9] 20 840 6
Purdue ASL [10] 104 1834 14

Table 1. Overview of word-level sign language datasets.

Figure 2. Extracted frames of classes ‘Sister’ and ‘Brother’. Both
the signs look similar except the hand movement begins from chin
for ‘sister’, and from forehead for ‘brother’.

current Neural Networks (RNNs) or shallow 3D-CNNs to
capture the temporal information from data. To the best
of our knowledge, no prior work benchmarked the latest
findings from action recognition architectures on the MS-
ASL dataset. With this work, we make the following con-
tributions: (1) We evaluate action recognition architectures
SlowFast [11], I3D [12], R(2+1)D [13] and P3D [14] on
the MS-ASL dataset. (2) We propose SlowFast architec-
ture as a robust and suitable architecture for sign language
recognition (3) We achieved state-of-the-art accuracy on
the MS-ASL dataset using the SlowFast 8×8 ResNet 101
model (4) We analyze the behaviour of different action
recognition architectures on WSLR.

2. Related works
2.1. CNN + RNN

The high performance of CNNs on image data has made
it an appealing choice to use it for videos. However, CNNs
by themselves are incapable of recognizing temporal struc-
ture. A convenient solution to this would be to pass the
frames of a video through a CNN to get their frame encod-
ings. And then use a Recurrent Neural Network (RNN) such
as LSTM to capture the long-range dependencies from the

frame encodings. S. Masood et al. [15] used an Inception-
V3 model along with LSTM network on Argentinean Sign
Language. Su Yang and Qing Zhu [16] suggested a model
trained using a custom convolutional neural network and an
LSTM. Similarly, [17–19] proposed approaches that have
leveraged the combination of CNN and RNN models.

2.2. Pose estimation models

Pose estimation have been used for human activity
recognition. However, most methods do not cover hand and
finger information, limiting their deployment for WSLR.
Specialised approaches have been implemented to employ
pose estimation for WSLR. A. Moryossef et al. [20] pro-
posed an architecture that will extract optical flow features
based on human pose estimation and used a linear classifier.
De Coster, M. et al. [21] proposed a method for estimat-
ing human key points that combines feature extraction using
OpenPose with end-to-end feature learning with CNN. The
well-proven multi-head attention mechanism used in trans-
formers is also employed to distinguish isolated signs in the
Flemish Sign Language corpus. Similarly [22,23] have also
used pose estimation for sign language recognition.

2.3. Using sensors and wearable devices

Previous works have used sensors such as Kinect to
tackle WSLR. These sensors capture depth, colour, and
skeletal tracking information, which are used as input to
train models. S. Lang et al. [24] proposed a framework
that takes advantage of Kinect to enable real-time 3D re-
construction, and Hidden Markov models with a constant
observation density were used for recognition. Garcı́a-
Bautista G. et al. [25] collected data from the Microsoft
Kinect Sensor and developed a technique to acquire hand
trajectory pattern data. The hand movements were then
interpreted using a Dynamic Time Warping (DTW) algo-
rithm. Similarly, wearable devices such as gloves have also
been used for sign language recognition, as seen in [26–29]
. However, such methods may be intrusive and expensive
for real-world applications compared to vision-based meth-
ods.

2.4. 3D-CNN

3D CNNs possess additional filters to capture temporal
information. However, due to the extra kernel dimension,
these models contain more parameters than 2D CNNs, mak-
ing them more challenging to train on small scale datasets
from scratch. Furthermore, they appear to prohibit the ben-
efits of ImageNet pre-training. Earlier works have imple-
mented shallow 3D CNN architectures like C3D [30] on lab
generated datasets with less number of signers and samples
from scratch as seen on [31–35].
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3. Action recognition artitectures
Action recognition architectures require large scale

datasets for training. We have implemented transfer learn-
ing on our models trained on the Kinetics 400 dataset [36].
This section provides a brief intuition of the architectures
we have trained for WSLR.

3.1. P3D

The P3D [14] architecture proposes residual bottleneck
blocks that decompose 3×3×3 filter size convolutions to
combinations of 1×1×3 temporal and 3×3×1 spatial convo-
lutions. This reduces the number of parameters compared
to 3D CNNs, making them easier to train on small scale
datasets. The P3D paper also presents a family of compu-
tationally feasible building blocks to perform 3D convolu-
tions efficiently.

3.2. R(2+1)D

The R(2+1)D [13] architecture takes inspiration from
dimension factorization by decomposing 3D convolutions
into lower dimensional convolutions. It is closely related
to P3D blocks in style. R(2+1)D converts the task of 3D
convolution into separable spatial and temporal elements,
enabling models to adapt separately to 2D spatial and 1D
temporal features. This results in easier optimization as
spatiotemporal filters are factorized. The R(2+1)D block
increases the number of nonlinearities in the network. This
is attributed to the extra activations between the 1D and 2D
convolutions in each block. This allows smaller filters to
map complex boundary spaces.

3.3. I3D

I3D [12] proposes to take advantage of successful archi-
tectures such as Inception [37] architecture and ResNet [38]
architectures to create Spatio-temporal models by trans-
forming them into 3D CNNs. 2D filters and pooling kernels
are converted into 3D filters and pooling kernels. This cap-
tures the additional temporal dimension of videos. Square
filters are made cubic, i.e. N×N filters become N×N×N by
repeating the weights of the pretrained 2D filters N times
along the temporal dimension and dividing by N to rescale
them. Image models usually have symmetric strides along
the horizontal and vertical dimensions since the spatial in-
formation is distributed uniformly across an image. How-
ever, the temporal stride should be adjusted depending upon
the frame rate and image dimensions. If it extends too much
in time relative to space, it may conflate frames with very
different spatial information and interfere with early feature
detection. While if it is too short, it may not capture scene
dynamics well. To accurately represent I3D on the MS-
ASL dataset, we chose the most popular 2D CNN architec-
tures as backbones for I3D. We trained I3D InceptionV3,
I3D ResNet 50 and I3D ResNet 101 models.

3.4. SlowFast

The SlowFast architecture [11] achieved state-of-the-art
performance on several action recognition datasets such as
Kinetics [36], Charades [39] and AVA dataset [40]. It was
inspired by biological research on retinal ganglion cells in
the primate visual system, 80% of the cells are composed of
Parvocellular (P-cells), and 15-20% are composed of Mag-
nocellular (M-cells). M-cells are capable of high tempo-
ral frequency and are sensitive to rapid temporal changes,
but they are not sensitive to spatial detail or colour. P-cells
provide high spatial and colour resolution but low temporal
resolution, thus responding slowly to actions.

SlowFast is an architecture that operates on two distinct
paths (Slow, Fast) with different frame rates. The Slow
pathway is a CNN with a large temporal stride τ on input
frames. A typical value of τ chosen for the experiment is
16, i.e. sampling 2 frames per second from a 30fps video.
The primary focus of the slow pathway is to capture finer
spatial semantics such as the texture, colours, and edges.
This is possible due to the higher number of channels com-
pared to the fast pathway. The ratio between the number of
channels between the slow and fast pathways is denoted by
β. The fast pathway captures rapidly changing characteris-
tics by having a smaller temporal stride and a higher frame
rate. In the fast pathway, more temporal resolution is uti-
lized, The frame ratio between the slow and fast pathway is
denoted by α.

The information of the two pathways is linked together
via lateral connections. The connections are unidirectional
and fuse the Fast pathway’s features into the Slow pathway
to combine the representations. Finally, on the output of
each pathway, a global average pooling is conducted. The
input to the fully-connected classifier layer is concatenated
from two pooled feature vectors.

The intuition behind utilizing SlowFast architecture for
WSLR is that when a person makes a sign with his hand,
the shape of the hand does not change significantly during
the gesture. However, the motion of the hand evolves at a
faster rate and contains significant features for the executed
gesture. As a result, the SlowFast network is an excellent al-
ternative for addressing the sign language recognition chal-
lenge.

We have implemented SlowFast 4×16 ResNet 50, Slow-
Fast 8×8 ResNet 50 and SlowFast 8×8 ResNet 101. The
ratio of the number of channels in our model is set to be
8 in order to match the original study, i.e. β = 1/8. The
frame rate ratio between the Fast and Slow paths is chosen
to be 4 (α= 4 for SlowFast 8×8) and 8 (α= 8 for SlowFast
4×16).

2448



Model Accuracy(%) Top-3(%) Top-5(%) #Parameters #Frames

P3D 85.55 95.75 95.75 25M 32
R(2+1)D 88.38 91.31 96.88 53.2M 32
I3D InceptionV3 85.83 95.06 96.05 12.3M 32
I3D ResNet 50 84.70 96.60 97.45 51.9M 32
I3D ResNet 101 88.10 97.16 98.58 99.4M 32
SlowFast 4×16 ResNet 50 89.52 95.18 97.73 33.7M 32+4
SlowFast 8×8 ResNet 50 90.37 96.60 98.58 33.8M 32+8
SlowFast 8×8 ResNet 101 92.35 97.73 98.87 62.1M 32+8

Table 2. Top-1, top-3, top-5 accuracies achieved by each model on the MS-ASL dataset along with total number of parameters and number
of frames passed as input.

4. Methodology

4.1. Data Preprocessing

The classes from MS-ASL followed a long tail distribu-
tion, as shown in Fig. 3. To construct a quality dataset,
we chose the 50 classes with the highest frequency to es-
tablish our hand sign dataset. Videos from these classes
were manually downloaded, screened, and trimmed to im-
prove dataset quality. Our compiled dataset deviated from
the original MS-ASL dataset as a significant amount of
video links were no longer valid, rendering our dataset an
even smaller subset of MS-ASL. The following observa-
tions could be made from the video samples in our dataset.
(1) Some signers had slow elaborated motion while oth-
ers finished the same sign within a second. (2) Several
videos had repeated signs of the same class and overlap-
ping signs from other classes. (3) Longer video clips had
frames with no sign being performed at the beginning or
the end of the clip. Frames with repeated signs, frames from
non-target classes, and idle frames were removed. Longer
videos were replaced by uniformly sampling frames from
the video. Shorter samples were initially processed by re-
sampling frames. However, on further examination, resam-
pling frames from smaller videos corrupted the temporal
information of the video. Hence, they were processed by
zero-padding the videos from front. In our final dataset,
each class has 48 videos on average, with a standard devia-
tion of 6 videos over all classes. Videos were split into 85%
and 15% train-test split.

Since ASL is symmetric, i.e. ASL hand signs do not
pertain to specific hands and thus are the same whether per-
formed by the left or right, including signs using both hands.
A lateral inversion of videos would not affect the validity of
a sample. In light of this, all videos were randomly hori-
zontally flipped during the loading of mini-batches. Sam-
ples were also randomly scaled and cropped to improve on
diversity.

Model Accuracy

Naive Classifier 0.99
VGG+LSTM [19, 41] 13.33
HCN [42] 46.08
Re-Sign [43] 45.45
I3D 81.76

Table 3. The average per class accuracy for baseline methods pro-
posed by the MS-ASL paper [6].

Figure 3. Distribution showing the number of video samples for
each class.

4.2. Training

We used transfer learning with models pre-trained on Ki-
netics 400 dataset. Each architecture had different data-
loader specifications. We sampled 64 consecutive frames
with a fast temporal stride of 2 and a slow temporal stride
of 16 for SlowFast 4×16 ResNet 50. We used a slow tem-
poral stride of 8 for SlowFast 8×8 ResNet 50 and SlowFast
8×8 ResNet 101.
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Figure 4. The bar graph shows the number of classes each class
has been misclassified into, e.g. samples from ‘paper’ have been
misclassified into ten different classes.

I3D, P3D and R(2+1)D uniformly sampled every other
frame from 64 consecutive frames yielding 32 frames. All
videos were augmented with horizontal flipping and scale
ratios between (1.0, 0.8) during runtime. We randomly
cropped 224×224 pixels for SlowFast, I3D, and P3D net-
works. R(2+1)D used input image dimensions of 112×112
pixel resolution.

We first trained the new output layer with a learning
rate of 1e−2 for 20 epochs. We then began unfreezing the
network architecture and hyperparameter tuning until we
achieved optimal performance for each model. We used a
cosine scheduler within the bounds of 1e−2 to 1e−5 during
fine-tuning for all models. We used L2 weight decay as a
regularizer ranging from 1e−3 to 1e−4 to counter overfit-
ting. We compiled our models using the Adam optimizer
and softmax cross-entropy loss.

5. Results and Analysis
In this section, we compare the performance of the eight

models that we have trained on the MS-ASL dataset. The
test accuracy has been reported in Table 2. I3D architec-
tures have achieved better performances by employing a
ResNet backbone, as in the case of I3D ResNet 101 and I3D
ResNet 50. The SlowFast 8×8 ResNet 101 has achieved a
new state-of-the-accuracy 92.35% on the MS-ASL dataset
with an improvement of 7.03% higher top-1 accuracy com-
pared to the previous state of the art accuracy 85.32% in-
troduced in the MS-ASL paper that uses the I3D Inception-
V1 model. The baseline accuracies established in the MS-
ASL100 dataset has been reported in Table 3.

5.1. Dataset inferences

Most models frequently misclassify pairs such as
‘brother-sister’, ‘white-like’, ‘mother-water’ as reported on
Fig. 6. It can be observed from Fig. 2 that the gestures,
‘brother’ and ‘sister’, involve moving hands vertically from
head to chest. The only variation is that, in the sign of
‘brother’ the hand begins from the forehead, but in the sign
of ‘sister’ the hand begins from the chin. We believe that
this high degree of similarity is the reason behind the mis-

Figure 5. The bar graph shows the distribution of false positives
among classes e.g. samples from six different classes have been
classified as ‘happy’.

Figure 6. The graphs show the average number of times each pair
is misclassified, e.g. the class ‘brother’ has been misclassified as
‘sister’ 2.5 times on average with respect to all models.

classification pairs, as other pairs also represent similarities.
From Fig. 4, We observe the distribution of misclassi-

fications of particular classes. We note that some classes
have more videos that are easily mistaken for others. Sam-
ples from the class ‘paper’ are misclassified among ten other
different classes. This is partially due to the absence of
distinctive features in the sign ‘paper’ and due to its sim-
ilarities to other classes. We observe the number of times
videos are misclassified into a particular class from Fig.
5. Comparison between both figures indicates a correla-
tion between classes with low misclassifications and classes
that contribute to high false positives like the class ‘happy’.
Although this behaviour is expected of classes with higher
samples in the dataset, we identify that the dissimilarity of
signs from other signs causes this. The class ‘eat’, for in-
stance, has one of the highest number of samples on the
dataset and yet contributes no false positives, as its features
are distinctive. Classes with high inter sign variations and
a low number of samples, like the class ‘computer’, also

2450



(a) SlowFast 8×8 ResNet 101 (b) I3D ResNet 101 (c) P3D (d) R(2+1)D

Figure 7. Confusion Matrices.

display high accuracy due to their distinctive features com-
pared to other signs.

5.2. Comparison of Architectures

Models such as I3D ResNet 50, I3D ResNet 101 and
R(2+1)D often misclassify similar classes as inferred from
the confusion matrices depicted in Fig. 7. However, Slow-
Fast architectures are more robust to similar input classes,
which indicates that SlowFast architectures can retain spa-
tial information better than other models.

In action recognition, Most activities, e.g. running or
swimming, repeat the motions after a point. Most of the
clips on the Kinetics 400 dataset last around 10 seconds,
and models with large temporal strides perform well by
sampling distant frames. However, this is not the case in
sign language detection. There is a high degree of vari-
ability in how quickly signers perform the signs. Most
signers perform each word under a second. And unlike
the classes in activity recognition, these gestures rarely re-
peat themselves. Hence, It is more advantageous to de-
ploy architectures highly sensitive to temporal information
in WSLR than action recognition. 3D CNNs may not be
ideal for sign language as spatial and temporal dimensions
are given equal importance, and variations in the temporal
speed of signs can affect model performance. Architectures
like R(2+1)D and P3D that decompose 3D convolutions to
2D spatial and 1D temporal convolutions work reasonably
well but fall short while combining temporal and spatial in-
formation. We believe that SlowFast architecture performs
better than other architecture as the high temporal sampling
frequency on the fast pathway of the SlowFast architecture
is able to capture highly essential temporal information very
well and combine them via lateral connections to the slow
stream to retain spatial information better than other mod-
els, making them highly effective for application on WSLR.

6. Conclusion
We have demonstrated that action recognition models

can be successfully adapted for the task of WSLR. We eval-

uated state-of-the-art network architectures on the MS-ASL
dataset and demonstrated that SlowFast 8×8 ResNet 101
achieves state-of-the-art-accuracy. Further, we have drawn
inferences from the results.
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