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Abstract

Facial expression recognition (FER) is a critical
computer vision task for a variety of applications. De-
spite the widespread use of FER, there is a dearth
of racially diverse facial emotion datasets which are
enriched for children, teens, and adults. To bridge
this gap, we have built a diverse expression recognition
database using publicly available videos from TikTok,
a video-focused social networking service. We describe
the construction of the TikTok Facial expression recog-
nition (FER) database. The dataset is extracted from
6428 videos scraped from TikTok. The videos consist
of 9392 distinct individuals and labels for 15 emotion-
related prompts. We were able to achieve a F1 score
0.78 for Ekman emotions on expression classification
using transfer learning. We hope that the scale and
diversity of the TikTokFER dataset will be of use to
affective computing practitioners.

1. Introduction
Emotion recognition research has come a long way

since Dr. Paul Ekman’s [14] work on universal emo-
tions, identifying the following “universal” emotions:
Happiness, Sadness, Surprise, Anger, Disgust, Fear,
and Contempt. A large body of Facial Expression
Recognition (FER) research focuses on building algo-
rithms to automatically identify emotions, and espe-
cially Ekman emotions, from modalities such as voice
[6], text, faces, and video clips [48]. They rely on the
availability of large datasets enriched with information
such as categorical emotion labels, facial landmarks like
the position of the nose or eyes, Facial Action Cod-
ing System (FACS) [13] action units detecting subtle

changes in facial features, or continuous dimensions
of valence, arousal, and dominance. Many of these
datasets have been created and made publicly avail-
able for research purposes. The Cohn-Kanade dataset
(CK) [30], one of the most used datasets in the field,
consists of frontal and side views of 182 adults (18-
50 years old, 69% female and 31% male, 81% Euro-
pean American) displaying 23 facial expressions, some
of which are FACS coded and emotion-labeled by an-
notators. The CK dataset was then enhanced with
27% more subjects, revised emotion expression labels,
and non-posed smiles seen in the CK+ dataset [43].
Other efforts, such as the Multimedia Understanding
Group (MUG) dataset, [1] also attempt to gather both
posed and naturalistic expressions. Unlike structured
in-lab data collection efforts, AffectNet [46] gathered
over 1 million facial images extracted from 3 major
search engines using 1250 emotion-related keywords,
also automatically increasing the number of distinct
subjects. AFF-Wild2 [38], AM-FED [44], GIFGIF+
[8], EMOTIW [12] and the OMGEmotion [3] datasets
also are compilations of real-world “in the wild” video
clips or gifs. Addressing the racial imbalance in the
datasets, some have focused their efforts on collecting
data from specific ethnicities, such as JAFFE [29] and
ISED [17].

FER algorithms are trained, tested, and validated
on these available datasets. As described in detail by
Ko [32], there are two main approaches for FER algo-
rithms: using handcrafted features or generating fea-
tures automatically through neural network outputs.
The first approach relies on the extraction of facial
components or landmarks in images, such as FACS
action units and their spatial and temporal changes
from videos. An expression classifier, such as a sup-
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port vector machine or random forest, is then trained
on these facial features. The second approach to FER
relies on deep learning, extracting optimal features di-
rectly from the image or video data using convolutional
neural networks (CNN) or a combination of CNN and
RNN (recurrent neural networks) for temporal features
of consecutive frames.

These expression recognition algorithms have many
potential applications to not only improve the qual-
ity of human-computer interactions (e.g. through en-
hanced security cameras, online courses detecting frus-
tration, or advanced driver assistance systems) but also
to assist humans in their interactions with each other.
Cultural differences, certain neurodevelopmental con-
ditions such as Autism Spectrum Disorder, or blind-
ness can affect our ability to understand the facial ex-
pressions of others. Initiatives like that of Buimer et
al. [7] and SuperPowerGlass [10, 16, 31, 50, 51, 57], a
wearable aid for the at-home therapy of children with
autism, leverage video-based emotion recognition algo-
rithms for clinical purposes and have had promising
results. [9,15] However, FER algorithms tend to suffer
from the domain shift phenomena and therefore remain
limited to datasets they are trained on. The perfor-
mance of face and emotion recognition algorithms de-
grades when confronted with different ethnicities and
age groups. To exemplify, Zhao et al. [60] noticed much
higher accuracy on Finnish people in their dataset than
on the Chinese subjects. Although algorithmic strate-
gies are being developed to measure and adjust for
these biases, building more diverse datasets remains
a top priority.

To address the need for more diverse, balanced FER
data, we leveraged TikTok challenges. We use pub-
licly available recordings of emotion acting challenges
to build a FER dataset containing racial diversity, tai-
lored towards teens, and young adults. The rest of the
paper is organized as follows: We describe the Tiktok-
FER data set in Sec. 2. In Sec. 3 we describe how the
data set is constructed by leveraging Amazon Mechan-
ical Turk. Finally, in Sec. 4, we present analysis and a
few simple experiments on the TikTokFER. Our goal
is to show that the TikTokFER can serve as a useful
resource for FER applications.

2. Properties of TikTokFER
Social media and TikTok in particular have come

under scrutiny in the last few years because of their lack
of member data protection, generation of potential na-
tional security concerns, and their influence on the rad-
icalization of the US political landscape. These geopo-
litical concerns led to the ban of the TikTok app in In-
dia in June 2020, its prohibition on all US government-

Figure 1. Fitzpatrick Scale

issued devices by the US Navy and the US Army in
December 2019, and calls to introduce US-based own-
ership of its parent company ByteDance. Neverthe-
less, since its launch in September 2016, TikTok’s user
base has grown considerably and has been installed on
devices over 3 billion times worldwide. It passed the
one billion milestone in February 2019, and it reached
three billion in mid-2021, with 1 billion monthly ac-
tive users as of January 2022. The TikTok app, which
lets users view 15 second clips and publish their short
videos leverages viral marketing methods such as chal-
lenges to engage a highly active community. Relying
primarily on teenagers and young adults (41% of its
users are between the ages of 16 and 24), TikTok has
managed to attract a wide range of users from over 155
countries and is available in 35+ languages [58].

TikTok’s huge and diverse audience is actively lever-
aged by brands through targeted marketing and influ-
encer sponsoring. Political parties and governments
have also started using this medium to communicate
political [45] and public health messages, for instance
during the COVID-19 crisis [4]. Educational initiatives
have also shown promising results in engaging audi-
ences through TikTok. “The Chemistry Collective,”
for example, was able to increase viewers’ interest in
chemistry by 82.7% [18] with their 16 educational Tik-
Tok clips. These initiatives illustrate the potential for
TikTok to be used for the common good.

TikTok videos are typically short, fun recordings of-
ten involving music, dancing, or comedy. The vast ma-
jority of these videos are shot using a front facing mo-
bile phone camera, where the recorder’s face is in clear
view. New challenges are continuously widely adopted
across a diverse population, such as particular dances
or skits. The nature of these videos, being first-person
shot, are rich with changing, human facial expressions.
TikTok is a great resource to access large amounts of
diverse facial expressions for our dataset.

Scale TikTok FER dataset contains a total of 6482
videos from 9392 distinct individuals, labeled for 15
emotion-related prompts. We created a diverse and
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emotion-enriched subdataset of 1207 teens, containing
232 males and 975 females. To our knowledge, this
is the largest and most diverse FER dataset targeting
adolescent subjects and the first leveraging TikTok vi-
ral challenges for data collection.

Diversity An estimation of the age and gender of
the subjects shows that 21.2% of them are male, 13.1%
are teens (<18yo) and 65% are young adults (<30yo).
We have used the Fitzpatrick scale in Figure 1 as a
proxy for race of which 42.9% skin type 1, 9.2% skin
type 2, 36.6% skin type 3, 2.4% skin type 4, and 8.9%
skin type 6.

3. Construction of TikTokFER
TikTok has already been used in non-FER con-

texts for data analyses and to build training datasets
for algorithms. Bandy et al [2] utilized social media
to analyze the impact of call-to-action videos from
more than 600 TikTok users and compare the vis-
ibility (i.e. play count) of these videos with other
videos published by the same users. Tao et al [49]
tested their algorithms on a dataset created by TikTok
for a video-recommendation competition composed of
76,085 videos with their textual captions from 36,656
users, and the users’ likes and interactions. TikTok
video comments have also been leveraged for sentiment
analysis [23] and an initiative by Jiang et al [22] uses
a dataset of 500,000 short videos, some extracted from
TikTok, for near-duplicate identification.

3.1. Collecting the data

In this work, we leverage TikTok’s diverse and young
user base to build a dataset enhanced for facial emo-
tion recognition. To do so, we have identified two
viral emotion-based challenges: Face challenge1 by
Zephyr (@zephyrean) posted on 2019-8-22 and Best
Emoji Face2 by Yangzom (@tseringyangzom17) posted
on 2018-6-17. Both challenges rely on audio composed
of a succession of emotion-related prompts. Each chal-
lenge participant uses the same audio as the original
video that started the challenge and mimics the emo-
tions or emojis when the audio prompts them to do so.
As seen in figure 3, on February 4th,2021 TikTok’s web-
site indicated that Zephyr’s Face challenge sound had
been used in 285.1K videos and that Yangzom’s Best
Emoji Face sound had been used in 331.6K videos.

The Best Emoji Face challenge prompts the user
to mimic the following emojis through visual and sound
cues (e.g. arrrr sound when the user is prompted to

1https : / / www . tiktok . com / music / Face - challenge -
6727954870776695557

2https : / / www . tiktok . com / music / Best - Emoji - Face -
6568049491721587461

mimic the angry-face emoji): , , , , , ,
, , , . For convenience, we translate these

emojis to the following: “kissing emoji”, “tongue pulled
emoji”, “clenched teeth emoji”, “surprised emoji”, “eye
roll emoji”, “cringe emoji”, “angry emoji”, “sad emoji”,
“very sad emoji” and “crying emoji”. However, we are
aware that cultural differences and context may change
these emojis’ interpretations.

The Face challenge is more straightforward and
directly asks the user to mimic a “grinning face with
normal eyes”, a “grinning face with clenched teeth”,
a “slightly smiling face”, a “winking face”, a “disap-
pointed face”, a “thinking face”, a “nauseated face”,
an “angry face”, a “crying face” and a “clown face”.

All the videos and data collected is publicly available
through the TikTok website. No TikTok account is
necessary for the collection of this data as the videos are
accessible outside of the app, from the TikTok website.
As we collected publicly available data, collection of
informed consent was waived by Stanford University
IRB.

3.2. Data processing pipeline

To create the TiktokFER database we built a data
processing pipeline3. The data extraction process is
done in four steps figure 2:

• Identifying the challenges.

• Extracting the raw videos.

• Splitting the videos into separate prompts. Ex-
tracting frames from prompt-specific videos.

• Detecting and extracting each face from each
frame.

3.2.1 Extracting the raw videos

To extract the raw videos from the TikTok web-
site, we used the scraper developed by GitHub user
drawrowfly4. Using the scraper, we have gathered en-
hanced video information such as the epoch timestamp
of the post, the user inputted text captions and hash-
tags associated, and the number of likes, shares, and,
plays. Additionally, author level information was also
extracted such as the author’s unique identifier, alias,
nickname, the number of accounts they are following,
the number of users following the author, the total
number of likes they have obtained, given, and the total
number of videos they posted.

3https://github.com/walllab/tiktok_FER
4https://github.com/drawrowfly/tiktok-scraper
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Figure 2. Schema of the data processing pipeline

(a) Best Emoji Face Challenge. (b) Face Challenge.

Figure 3. TikTok challenges

Figure 4. Use of convolution to find the location of an
original prompt audio in a video to split (example with the
kissing emoji audio prompt)

3.2.2 Splitting the videos into separate
prompts.

The videos consist of different facial expressions, and
the transition between them is accompanied by differ-

ent sound prompts that signal the user to mimic the
given face/emoji. These signals are the same across
all videos in a challenge and we use them to detect
the beginning of an expression. We achieve this by
first collecting all of the unique prompts in a challenge.
We then “search” for these sets of prompts in the au-
dio signals of all videos. This “search” is performed
by a signal processing tool convolution. In convolu-
tion, we compute the inner product of our target sig-
nal (prompt) with a portion of the main signal (audio
signal from the entire video) and we perform this com-
putation for the entirety of the main signal and do this
by sliding the target over the main signal, one sample
at a time. When we achieve a perfect overlap between
the prompt and the audio track, the inner product is
maximized, hence we find the start time of the prompt.
This method is also referred to as a matched filter, and
it is an optimal detection algorithm in our conditions.
More formally, for a target signal h[t] and main signal
x[t] the result of convolution operation at time t∗ is:
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y[t∗] =

N−1∑
k=0

h[k]x[t∗ + k]

where N is the length of the target signal. We calcu-
late y for the all timestamps and search for the times-
tamp y[t] =

∑
i h[i]

2. If such point is found, corre-
sponding index minus half the signal duration gives
us the starting point of the prompt. In the following
case, the first function is the original video’s pre-split
audio prompt (the audio signal of “grinning face with
clenched teeth” for example) and the second is the au-
dio signal of the video we wish to split. The convolution
between the two audio signals is maximal if there is no
ambient noise when the original video’s audio prompt
matches the location of the same audio prompt in the
video we wish to split. As seen in figure 4, the kissing
emoji audio prompt can be found in the audio to split
at timestep 154,399, i.e. when the convolution of both
audio signals is maximal.

The frames from each video are extracted once all
the videos have been split into prompt sub-clips. We
have limited ourselves to 2 frames per second.

3.2.3 Detecting and extracting each face from
each frame.

To detect the face in each frame we used the Reti-
naFace [10] algorithm with the MobileNet-0.25 back-
bone. If no face is detected in the video taken in land-
scape mode we rotated the frames 90 degrees to ac-
count for the orientation. As provided in Table 1, on
manual testing of 200 frames, the algorithm showed a
100% true positive rate and only had 4 false positives
out of the total 223 faces in the frames. We have con-
sidered all human faces (excluding paintings) as a true
positive and any detection of non-human faces (such as
emojis) as false positives. The frames contained multi-
ple faces, either because of multiple people in the video
or duet style videos, and did not contain any faces .
The faces were then aligned based on detected facial
key points.

3.3. Crowdsourcing the labels

Crowdsourcing has been proven to be an affordable
and effective way to label large amounts of data, includ-
ing complex social human behaviors [52–56]. To build
a gold standard labeled data set, we leverage crowd-
sourced workers to label a set of images collected after
the face extraction and alignment process. We used
Amazon Mechanical Turk (AMT) to label the data. In
each of our labeling tasks, we present AMT workers
with a set of candidate images and examples to help

them understand the task. We ask the workers to ver-
ify whether each image contains a face in the frame. If
there is no face in the frame, no other label should be
returned and the rating process ends. If there is a face
in the frame, the rater indicates their estimation of the
individual’s skin color, age, and gender in the second,
third and fourth labels. In the final labels, the rater
indicates their estimation of the emotion expressed by
the individual within two lists of possible emotions: Ek-
man emotions and beyond Ekman which are complex
non-Ekman emotions. The second list of possible emo-
tions (complex non-Ekman emotions) is only presented
to the rater if they have not selected any from the first
list (Ekman emotions). It is crucial to set up a quality
control system to ensure this accuracy. Human users
make mistakes and not all users follow the instructions.
Users do not always agree with each other, especially
for more subtle or confusing images. The solution to
these issues is to have multiple users independently la-
bel the same image. An image is considered positive
only if it gets a convincing majority of the votes.

3.4. Data Validation

Identity resolution is necessary to identify the to-
tal number of individuals in the dataset, estimate their
age, gender, and skin color, and validate the quality of
the emotion labels. We model the dataset as a weighted
undirected graph where each node corresponds to an
image and connection weights are assigned based on the
similarity of the two faces. For measuring similarity, we
use convolutional neural networks to extract facial fea-
tures and calculate the cosine distance between vectors
for each individual to build the graph. In particular,
we use the Arcface algorithm [11], which is a widely
used facial recognition model, for feature extraction.
We then threshold the edge weights and only keep the
ones exceeding them to reduce the computational com-
plexity of the clustering algorithm. This threshold is
selected with a cross-validation process performed on
a subset of the dataset. To accurately count the num-
ber of individuals in the dataset, we use the Chinese
whispers (CW) [5] algorithm. The identity resolution
is done in three steps (Figure 5 ) :

• Running the CW algorithm to identify the distinct
individuals within the same video.

• Aggregating facial features per individual per
video and using cosine similarity to identify iden-
tical individuals in other distinct videos.

• Using cosine similarity with a higher threshold to
remove exact duplicates across videos.
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Figure 5. Identity resolution process on the TikTok dataset

# Best Emoji Face Face Challenge Total
frames used 100 100 200
faces in the frames 110 113 223
faces correctly identified 110 113 223
faces missed 0 0 0
faces incorrectly identified 3 1 4

Table 1. Performance of the RetinaFace algorithm on randomly sampled frames

To validate this process we collected 100 faces, split
evenly between both challenges. We manually checked
these 100 videos and noticed that there were: 50 dis-
tinct individuals, 25 of them were present in two dis-
tinct videos (but not duplicated videos) and 25 of them
were present as duplicates. The aim is to accurately de-
tect clusters corresponding to the same individual and
clusters corresponding to exact duplicates. Since we
know the ground truth of the labels, we use the ad-
justed Rand [21] index for clustering evaluation. The
adjusted Rand index is a consensus measure, measur-
ing the similarity between two assignments, ignoring
permutations, and adjusting for the chance. As seen in
Table 2, the detection of unique individuals yielded an
adjusted Rand index of 0.9

4. Results and Analysis
In this section, we present an analysis of the Tik-

TokFER dataset and provide baseline performances on
certain discriminative tasks.

4.1. Analysis

Face Challenge and Best Emoji Face Challenge re-
sulted in a total of 6,428 videos (2,447 and 3,981, re-

spectively). After the data preprocessing and identity
resolution, there are 92,389 distinct faces in the Tik-
TokFER dataset.(Table 4) The TikTokFEER data set
consists of 15 emotions: Angry, Clenched-teeth, Clown-
face, Cringe,Cry, Disappointed, Disgust, Eye-roll, Kiss,
Nauseated-face, Sad, Surprise, Smiling, Thinking face
and Winking face. 5 of these emotions, namely: Angry,
Disgust, Sad, Surprise, Smiling are Ekman emotions
and the rest are complex beyond Ekman emotions. Fig-
ure 6 & 7 show the distribution of expressions in the
dataset.

4.2. Results

To perform an initial analysis to gain an idea of
the emotion-classification power of TikTok, we first de-
velop a model using ResNet-50 [19], pre-trained on Im-
ageNet. We replace the last linear to match our output
size of 15 and allow all the layers to be trained. We use
Adam optimizer with learning rate 0.001, default pa-
rameters and cosine annealing with warm restarts [42].
We utilize label smoothing [47] to avoid overconfidence.
We implemented this model and its training procedures
in PyTorch and performed training on a single NVIDIA
Tesla P100 GPU.

We tested the performance of our mode on popu-
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Challenge Number of Input Faces Number of Distinct Individuals Adjusted Rand Index

Face challenge 100 (including 25 duplicates and 25 faces from
same individuals but a different timestamp)

50 0.89

Best Emoji Face 100 (including 25 duplicates and 25 faces from
same individuals but a different timestamp)

50 0.91

Both 200 (including 50 duplicates and 50 faces from
same individuals but a different timestamp)

100 0.9

Table 2. Performance of the Chinese whispers algorithm

lar FER benchmarks for 5 Ekman emotions present in
our dataset and results are provided in Table 3. The
analysis on classification accuracy shows that TikTok-
FER dataset can provide significant predictive power
for expression classifications tasks.

Figure 6. Distribution of Ekman emotions in the dataset

5. Discussion and Future Work
We anticipate that TikTokFER will become a use-

ful resource for a broad range of FER-related research.
Most directly, TikTokFER can become a standard
training resource for FER. Most of today’s FER recog-
nition algorithms have focused on smaller data sets
that are not diverse. TikTokFER, on the other hand,
contains a large number of images for Ekman emo-
tion classes. One interesting research direction could
be to study the evolution of emotion across various
age, gender, and skin color groups. (2) Using Tiktok
FER dataset to build a personalized FER algorithm
using meta-learning methods. Current emotion classi-
fiers fail on pediatric populations [20, 24]. Using FER
models which are tuned for pediatric populations can
improve digital interventions for children with affective
conditions such as autism [25–28].

Figure 7. Distribution of beyond Ekman emotions in the
dataset

Figure 8. Confusion matrix for Ekman emotions on valida-
tion set

Some potential drawbacks of the dataset are that the
emotions are not natural or genuine, as they are acted
out. In the challenge, the TikTokers try to pose based
on the emoji but emoticons are not equal to emotions.
Still, it is possible to glean useful information about a
diverse number of emotions with this data.
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Dataset F1(macro) Accuracy
Tiktok-validation (all 15 expressions) 0.47 0.52

Tiktok-validation 0.78 0.79
Affwild2-validation [33–40,59] 0.20 0.29

CK+ [43] 0.65 0.73
CAFE [41] 0.50 0.499

Table 3. Predictive performances on 5 Ekman emotions

Challenge Videos Frames Distinct Face Distinct Individuals
Face challenge 3,981 74,922 37,181 3,571

Best Emoji Face 2,447 139,578 54,567 5,875
Total 6,482 214,500 92,389 9,392

Table 4. TikTokFER dataset

Figure 9. Confusion matrix for all emotions on validation
set
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