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Abstract

Nonparametric based methods have recently shown
promising results in reconstructing human bodies from
monocular images while model-based methods can help
correct these estimates and improve prediction. However,
estimating model parameters from global image features
may lead to noticeable misalignment between the estimated
meshes and image evidence. To address this issue and lever-
age the best of both worlds, we propose a framework of
three consecutive modules. A dense map prediction mod-
ule explicitly establishes the dense UV correspondence be-
tween the image evidence and each part of the body model.
The inverse kinematics module refines the key point predic-
tion and generates a posed template mesh. Finally, a UV
inpainting module relies on the corresponding feature, pre-
diction and the posed template, and completes the predic-
tions of occluded body shape. Our framework leverages
the best of non-parametric and model-based methods and is
also robust to partial occlusion. Experiments demonstrate
that our framework outperforms existing 3D human estima-
tion methods on multiple public benchmarks.

1. Introduction

The 3d estimation of the human body pose and shape
from a monocular image is a fundamental task for vari-
ous applications such as VR/AR, virtual try-on, metaverse
and animations. It is challenging mostly due to the depth
ambiguity and lack of evidence from single image. There
are several ways to solve this ambiguity such as leverag-
ing multi-view or video data to fuse image evidence from
more images and infer occluded parts. For the case of
single images, researchers used parametric models such as
SMPL [22] to fit 2D image evidence [15] or use human pose
prior [12,13,31] to penalize problematic human pose / mesh
prediction in combination with modern deep learning tech-
niques. However, these model-based methods are prone to
produce corrupted results when severe occlusion happens.

Figure 1. From left to right: Original image our mesh prediction
overlay and alternative views mesh visualization. Images are from
3DOH [51], and LSP [10] datasets. (Best viewed in Color)

Nonparametric methods use non-compressed represen-
tations like voxels [32], heatmaps [29] and joint location
[19, 21, 36] as the target for modern deep learning. How-
ever, to estimate dense meshes they are computationaly ex-
pensive and consume lots of memory. They either use in-
tegral methods to estimate normalized joint location [29]
or simplify meshes [21] to reduce the number of vertices.
Without post-processing, these methods also generate qual-
itatively non-pleasing results. The dense correspondence
methods [45–47], which are based on template SMPL hu-
man mesh surface and have been proven for various tasks.

Connecting nonparametric methods and model-based
methods is hard due to the difficulty in localizing the
corresponding feature. [6, 29, 50] utilize bounding boxes
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or keypoints location to find the related features to esti-
mate necessary SMPL parameters. While [14, 19] learn
the feature-parameter correspondence (attention) implicitly
through neural networks. [45, 48] consider the correspon-
dence between the mesh representation and pixel repre-
sentation based on human surface mapping (UV coordi-
nate system). However, they estimate the SMPL parameter
through a light weight FC network and treat this simple op-
timization process as a post process. Their methods also do
not convey the advantages of nonparametric methods such
as robustness to occlusion.

To leverage the advantages from both worlds, we pro-
pose a 3d human body estimation framework that consists
of three modules: Dense Map Prediction module (DMP),
Inverse Kinematics module (IK) and UV Inpainting module
(UVI). DMP explicitly predicts per-pixel human 3d joint lo-
cation, 3d surface location in root relative coordinates, 3d
displacement between the joint location and surface loca-
tion, and also predicts UV coordinates which represent the
human surface in a 2D grid. This module is robust to partial
occlusion when predicting joint, as all the image evidence
belongs to this part will contribute to the prediction explic-
itly. IK module connects the nonparametric prediction to
model-based method. We first warp the DMP dense pre-
diction to UV space and get the joint prediction based on
the part-segmentation in UV space. Then we use a two-
stage multi-layer perceptron, where the first stage inpaints
and refines the joint prediction, while the second stage es-
timates SMPL parameters and eventually produces a posed
mesh. With all the predictions in UV space from DMP and
IK, UVI inpaints and refines the 3d body pose and mesh in
UV space.
In summary, our contributions are three fold:
• We propose a 3d body estimation framework from single
image that seamlessly leverages the best of the both worlds
(model-based and nonparametric).
• The method is robust to occlusions and can self-correct
wrong poses from Dense Map Prediction module.
• We achieve state-of-the-art performance on H36M and
3DOH datasets.

2. Related Work
3D human shape estimation from monocular images
SMPL [22] has been widely used for 3D human mesh re-
construction. To boost its power in practice, a number
of deep learning frameworks have been proposed by us-
ing SMPL as regression targets [12, 15, 23, 29, 31, 45]. [12]
regresses SMPL parameters directly from input images by
end-to-end training. Following this research direction, [29]
add spherical Gaussian attention joint based on initial joint
estimation, and the use the the attended feature to learn
the vertices location. [15] combine learning and optimiza-
tion [31] in the same framework but cannot handle occlu-

sions. [45] uses the template UV mapping from SMPL and
transforms 3d mesh reconstruction to decomposed UV es-
timation and position map inpainting problems. However,
the way to get 3d human joint from SMPL mesh is based on
the pre-trained joint regressor, which will induce intrinsic
errors and usually does not generalize to other datasets.

3D human pose estimation from monocular images
Deep learning approaches have shown success in regressing
3D pose from a single image [24,26,28,32,35,40,41,43,49,
52]. Basically, most current models can be categorized into
two frameworks. The first is to directly estimate 3D pose
from images, based on volumetric representation [28, 32].
But these approaches may involve in high memory con-
sumption and complex post-processing steps. Based on the
explosive improvement in 2D pose estimation [43], another
framework is to estimate 2D pose from images and then lift
2D pose to 3D pose [26, 52]. Since these approaches take
2D joint locations as input, 3D human pose estimation sim-
ply focuses on learning depth of each joint. This releases
learning difficulty and leads to better 3D pose. However,
there are few methods on systematically handling occlusion
in the first framework while the second framework cannot
recover information if the joint detector fails. Additionally,
how to get human surfaces from the joint prediction remains
a problem.

Inverse Kinematics The inverse kinematics (IK) problem
has been extensively studied in robotics [1, 42] and graph-
ics [4] and its techniques have been used in 3d human pose
estimation [14,17,39,53,54]. Numerical solutions [1,4,42]
rely on time-consuming iterative optimization. [39] uses
temporal sequence to resolve IK ambiguity. [17] decom-
poses the IK rotation to the product of swing rotation and
twist rotation and solve swing rotation analytically from
predicted joint locations. Feed forward solution like [53,54]
propose BodyIKNet to regress SMPL [22] pose and shape
parameters from 3d joint location, However, it leads to a
sub-optimal solution when partial occlusion happens.

Occlusion [37] presented a systematic study of various
types of synthetic occlusions in 3D human pose estima-
tion from a single RGB image. Since synthetic data can
not fully depict the real occlusion, [5] learns from real data
and uses grammar models with explicit occluding templates
to reason about occluded people. To avoid specific design
for occlusion patterns, [3] presents a method for model-
ing occlusion that aims at explicitly learning the appearance
and statistics of occlusion patterns. They also synthesizes a
large corpus of training data by compositing segmented ob-
jects at random locations over a base training image. [2] uti-
lizes a cylinder model and confidence maps to filter out the
occluded joints and uses flow warped joint in the same video
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Figure 2. Our 3d body estimation framework consists of three part: Dense Map Prediction module (DMP), Inverse Kinematics and SMPL
module (IK) and UV Inpainting Module (UVI).

to approximate the missing joints. [33] integrates depth in-
formation about occluded objects into 3D pose estimation.
To provide full-geometry information to handle occlusion
scenarios, [40] and [7] provide 3d scene geometry as multi-
layer depth maps or signed distance fields into the infer-
ence stage. [34] proposes a simple but effeive self-training
framework to adapt the model to highly occluded observa-
tions. To fully utilize the holistic human body model (e.g.
SMPL [22]), [51] represents the target SMPL human mesh
as UV location map and converts the full-body human es-
timation as an image inpainting problem. However, these
frameworks either rely on nonparametric estimation or pure
model-based regression, how to leverage the best of both
worlds seamlessly remain an unexplored problem.

3. Method

As shown in Fig 2, our framework consists of three con-
secutive modules, including a dense map prediction module
(DMP), which extract dense semantic maps (e.g. 3d joint
location, surface location and their displacements) and cor-
respondence UV position, an inverse kinematics and SMPL
module (IK), which inpaint 3d joint location and estimate
the smpl parameters, as well as a UV map inpainting mod-
ule, which estimate the final joint location and mesh loca-
tion in UV space.

3.1. Dense Map Prediction Module

Our dense map prediction module is an encoder-decoder
architecture and is used to extract the IUV images Mi, as
well as dense semantic maps including dense joint map
Mj , dense location map Ml and dense displacement maps
Md. They are further illustrated in Fig 3. Mi is generated
from the continuous UV map from [45], it is continuous
in both image space and UV space, thus, easier to learn
compared with original UV map [22]. It is used to con-
vert the dense local features as well as these semantic maps
to UV space. For location map Ml, it represents the posi-
tion of each vertices from the SMPL human mesh surface in
root-relative coordinates. To construct Ml groundtruth, we
first use the SMPL model, SMPL parameters and camera
parameters to generate the vertices location in root-relative
coordinate, and generate the full UV space location map
UVl using barycentric interpolation (The mesh faces corre-
spondence is defined by [45]). After that we use the Mi to
fetch values from UVl to get the dense location map in im-
age space. For the generation of dense joint map Mj , we
first rely on T-pose SMPL mesh and assign each vertex to
the nearest joints (14 LSP joints setting), after that we use
barycentric interpolation to get the UV space assignment,
and further refine the assignment by make it symmetric in
UV space (e.g. left hip and right hip has symmetric shape
in UV space, as illustrated in Fig 4). We term the part as-
signment in UV space as Auv . After setting the assignment
in UV space, we use the Mi to query values from UVj to
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Figure 3. Semantic maps aligned with image space. From left to
right: IUV image Mi, Dense jointmap Mj , dense location map
Ml and dense displacement map Md. (Best viewed in Color)

Figure 4. Warped Images in UV space based on IUV images Mi.
From left to right: Part segmentation in UV space Auv , UV space
jointmap UVj , UV space location map UVl and UV space dis-
placement map UVd. (Best viewed in Color)

get the dense joint map in image space. UVj stores the root-
relative joint location. We define displacement as the resid-
ual between vertex location and the assigned joint location,
thus UVd = UVl − UVj and Md = Ml −Mj . As our hu-
man are left-right symmetric (e.g. left hand has symmetric
shape with right hand and the size and the distance between
joint and surface is almost the same.), the magnitude of left
part and right part of UVd should be the same.

These semantic maps are aligned with the human in the
images. Thus we are able to train a encoder-decoder net-
work to estimate directly from image space. Dense image
space joint prediction shares the similar flavor with [30,44].

The objective for the dense map prediction module is

ℓDMP = ℓMi + ℓMl
+ ℓMj + ℓMd

(1)

ℓMi
is composed of two parts: a binary mask loss ℓMib

of human body, which distinguishes pixels from those at
the background, and the human pixels. The loss function of
ℓMib is binary cross entropy loss. our CNN further outputs
the UV coordinates and uses L1 loss ℓMiuv

.

ℓMi = ℓMib
+ ℓMiuv (2)

For ℓMl
, ℓMj

and ℓMd
, we use L1 loss to directly regress

the real value. As these values are already in root-relative
coordinate and in unit meters, thus their data range is −1 to
+1, we do not further normalize them.

Our dense map prediction module not only predicts these
semantic maps, but also extracts both global feature to es-
timate camera parameter and local feature for the UV im-
painting module.

Figure 5. Full groundtruth in UV space. From left to right: UV
space jointmap UVj , UV space location map UVl and UV space
displacement map UVd. (Best viewed in Color)

3.2. Inverse Kinematics Module

Estimate Joint Location from DMP After warping the
semantic maps (Ml,Mj ,Md) from image space to uv space,
we get the incomplete uv joint map UVj . Based on the uv
space joint assignment Auv (as shown in Fig 4), we aggre-
gate the dense prediction UVj for each joint and average
them if they are not fully occluded. Thus we have a coarse
prediction for each joint Jinitial.

Joint Inpaint and Refine Module Even though each hu-
man pixel contributes to joint prediction, there are still cases
that some joints have no assigned vertex/pixel available
from the image evidence. Thus we propose the joint inpaint-
ing module to inpaint these missing joints. This network
is pretty flexible and can be MLP [26], GCN [52] or even
modern transformers [20]. For the ease of implementation
we use simple multi-layer perceptron. Our joint inpainting
net is inspired by [26], which is simple, deep and a fully-
connected network with six linear layer with 256 output fea-
tures. It includes dropout after every fully connected layer,
batch-normalization and residual connections. The model
contains approximately 400k training parameters. The goal
of this network is not only to inpaint the joints but also to
refine the joints prediction that is not occluded. It takes the
Jinitial as input and the output of the network is the joint
in root-relative coordinates Jrefine. We use L1 loss Lji to
train joint inpaint and refine module. The structure of the
joint inpainting and refine module is shown in Fig 6.

Inverse Kinematics Module After getting the sparse 3d
human keypoints. We want to repose the template SMPL
meshes based on the predicted joints location. To solve
this problem we leverage inverse kinematics (IK). Typi-
cally, the IK task is tackled with iterative optimization meth-
ods [1, 4, 42], which requires a good initialization, more
time and case-by-case optimization method. Here we pro-
pose a global inverse kinematics neural network GIK-Net.
This network is constructed by the basic fully connected
neural network module with residual connection, batch nor-
malization and relu activation similar to [26]. In particular,
GIK-Net takes the refined keypoint coordinates Jrefine in
root-relative space and outputs joint rotations θ and β which
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Figure 6. Structure of GIKNet. (Best viewed in Color)

serve as the input for SMPL layer. As we also use the Mo-
cap dataset (AMASS [25], SPIN [15] and AIST++ [18]),
our GIK-Net can implicitly learn the realistic distribution
of human kinematics rotation and human shape. The use
of the additional Mocap dataset serves the same purpose as
the factorized adversarial prior [12], variational human pose
prior [31] and motion discriminator [13]. We use L1 loss Lθ

and Lβ to train GIK-Net. The structure of GIK-Net is shown
in Fig 6.

SMPL revisits and Reposing Module SMPL [22] repre-
sents the body pose and shape by pose θ ∈ R72 and shape
β ∈ R10 parameter. Here we use the gender-neural shape
model following previous work [12,14,15]. Given these pa-
rameters, the SMPL module is a differentiable function that
outputs a posed 3D mesh M(θ, β) ∈ R6890×3. The 3D joint
locations J3D = WM ∈ RJ×3, while J are computed with
a pretrained linear regressor W . After getting the θ and β
from the GIK-Net we send them to SMPL layer to get the
body mesh prediction.

We also augment the joints input for GIK-Net from Mo-
cap dataset with guassian noise and random synthetic oc-
clusion (30%). The augmentation helps our GIK-Net gen-
eralize to more realistic noisy input. We use L1 loss Lvi to
train the mesh prediction from SMPL module.

The objective for the inverse kinematics and smpl mod-
ule is

ℓIK = ℓθ + ℓβ + ℓji + ℓvi (3)

3.3. UV Inpainting Module

The goal of UV inpainting module is to regress 3d joint
and mesh location directly based on the feature / seman-
tic output (UVl, UVj , UVd) from DMP and semantic output
(UVl, UVj , UVd) from IK.

Inevitable Fitting Error introduced by SMPL model
and Joint regressor The advantage of directly regressing
joint/mesh location over model-based method is that model-
based method will introduce intrinsic fitting error. Specifi-
cally, we use the SMPL layer, groundtruth SMPL parame-
ters (from Mosh), and the joint-regressor [15] to obtain fit-
ted joint for the whole Human3.6M dataset. We get average
fitting error as 24.1 mm (MPJPE) when compared with the
Human3.6M joint from Mocap system. It means that even

we predict perfect SMPL mesh we still have about 24.1 mm
fitting error. Thus we argue directly train and estimate joint
location from UV space is a better alternative solution.

UV inpainting module After getting the refined joint lo-
cation Jrefine from IK module, we distribute the refined
joint location in UV space based on UV space joint assign-
ment map Auv and generate refine UV joint map UVjrefine.
We also have the reposed template mesh and the corre-
sponding reposed UV location map UVl (through barycen-
tric interpolation). Additionally, we have features UVf , lo-
cation map UVl, joint map UVj and displacement UVd from
DMP. We combine the best of both worlds ( DMP and IK)
feature through aggregation and send it to our UV inpaint-
ing module. The UV inpainting module is a light UNet with
skip connections. We can see the Fig 5 is the complete ver-
sion of Fig 4 and serves as the groundtruth for the UV in-
painting module.

For the training of the UV inpainting module, we have

ℓmap = ∥ÛV map − UVmap∥1 (4)

Note the ‘map’ represents location map, joint map and dis-
placement map in uv space. Addtionally, we have 3d joints
and 2d joint loss based on the predicted camera parameter.
Our camera parameters consist of scale and offset parameter
to map the xy in J3d to J2d.

ℓj3d = ∥Ĵ3d − J3d∥1 (5)

ℓj2d = ∥Ĵ2d − J2d∥1 (6)

As we know, the distance between the human surface to the
joints are left-right symmetric, thus we also apply symmet-
ric loss on the magnitude of displacement.

ℓdismag = ∥∥ÛV d∥ − ∥ÛV
flip

d ∥∥1 (7)

To align the predicted mesh surface with image aligned
IUV images Mi, we also adopt consistent loss from [45]. It
is enabled by the camera parameter predicted by our model
(scaling and offset parameter).

The objective for the uv inpainting module is

ℓUV I = ℓdismag + ℓj2d + ℓj3d + ℓmap + ℓcon (8)

Thus we have all the losses as

ℓall = ℓDMP + ℓIK + ℓUV I (9)

Inference We do inference of 3d joint location from UVj

and based on the uv assignment Auv for each joint. We
average all the prediction for the specific joints if this pixel
prediction is valid. For human mesh prediction we use the
barycentric interpolation from the UV space location map
UVl.
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Stages Training Datasets
DMP H36M, MPI-INF-3DHP, MPII, COCO, LSP
IK H36M, MPI-INF-3DHP, AMASS, AIST++
UVI H36M, 3DOH

Table 1. Training datasets for each module.

3.4. Implementation Details

The proposed framework is trained on the ResNet-50 [8]
backbone pre-trained on ImageNet. It takes a 224 × 224
image as input, and input resolution for UVI is 64 × 64 and
the output resolution is 128 × 128. We train three modules
separately. We first train our DMP, and based on the out-
put of DMP and Mocap data we train our IK; We finally
fix and concat DMP and IK, and train UVI module. We ap-
ply synthetic occlusion [38] when train DMP. The training
data is augmented with randomly scaling, rotation, flipping
and RGB channel noise. We use the Adam optimizer. The
training data for each module is illustrated in Table 1.

4. Experiments
4.1. Dataset and Evaluation Metric

Human3.6M [9] is commonly used as the benchmark
dataset for 3D human pose estimation, consisting of 3.6
millions of video frames captured in the controlled environ-
ment. It has 11 subjects, 15 kinds of action sequences and
1.5 million training images with accurate 3D annotations.
Similar to [12], we use MoSH to process the marker data
in the original dataset, and obtain the ground truth SMPL
parameters to generate the groundtruth for UVl. For a fair
comparison, we use 300K data in S1, S5, S6, S7, S8 for net-
work training, and test in S9, S11.
3DOH [51] utilize multi-view SMPLify-X [31] to get the
3d ground truth. The dataset is designed to have object
occlusion for subjects. It contains 50,310 training images
and 1,290 test images. It provides 2D, 3D annotations and
SMPL parameters to generate meshes. We use the test set
for evaluation purposes and the training set to train the UVI
module.
LSP [10] dataset is a 2D human pose estimation bench-
mark. In our work, we use the [16] SMPL parameter to
render the Mi to train DMP module.
MPI-INF-3DHP [27] is a dataset captured with a multi-
view setup mostly in indoor environments. No markers are
used for the capture, so 3D pose data tend to be less accurate
compared to other datasets. We use the provided training set
(subjects S1 to S8) for training. We use the it to train DMP
and IK module.
Mocap dataset We use [25] AMASS, AIST++ [18] and
SPIN [15] dataset to train our occlusion aware GIKNet.
Evaluation We evaluate our method on H36M [9] dataset

Figure 7. Different part segmentation choice in UV space. (Best
viewed in Color)

H36M
Method MPJPE MPJPE-PA
HMR [12] 88.0 56.8
DaNet [47] 61.5 48.6
HoloPose [6] 60.3 46.5
SPIN [15] 62.5 41.1
I2L [29] 55.7 41.1
DetNet [53] 64.8 50.3
PHMR [17] - 41.2
DecoMR [45] 60.5 39.3
PyMaf [48] 57.7 40.5
Ours DMP-14 69.7 51.7
Ours IK-14 67.3 50.6
Ours UVI-14 54.7 38.4

Table 2. Reconstruction errors on Human3.6M dataset.

3DOH
Method MPJPE MPJPE-PA MPVE
SMPLify-X - 156.4 177.3
OOH [46] - 58.5 63.3
SPIN [15] 104.3 68.3 113.4
PyMAF [48] 96.2 - 107.3
HMR-EFT⋆ [11] 75.2 53.1 -
PARE⋆ [14] 63.3 44.3 -
Ours DMP-14 128.4 109.8 -
Ours IK-14 112.9 80.8 133.5
Ours UVI-14 58.3 44.6 72.3

Table 3. Comparison with SOTA performance on 3DOH dataset.
⋆ denotes the model trained on better ground truth data from EFT
[11].

and 3DOH [51] datasets. We report Procrustes-aligned
mean per joint position error (MPJPE-PA) and mean per
joint position error (MPJPE) in mm. For 3DOH we also
report mean per vertex error (MPVE) in mm.

4.2. Quantitative Results

Comparison with SOTA performance We can see our
final stage (UVI-14) in Table 2 achieve state-of-the-art per-
formance on common H36M benchmark. Our SOTA per-
formance demonstrates the usefulness of proposed combi-
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Figure 8. Pose and shape prediction from DMP module, IK module and UVI module. (Best viewed in Color)

nation of model-based and nonparametric approaches. In
Table 3, as our methods focus on both pose and mesh while
[46] focus more on meshes, they achieve SOTA perfor-
mance on 3DOH dataset; PARE [14] uses the EFT dataset
[11] with improved groundtruth thus outperforms us on
MPJPE-PA metric.

14 joints vs 24 joints setting Another way to get 24 joints
prediction from DMP is to have a 24 joints segmentation
Auv in UV space following SMPL setting. As shown in
Fig 7 we define 14 joints setting and 24 joints setting. We
run DMP-24 and DMP-14 and evaluate on the predicted
Jinitial. We observe the error of DMP-24 is much higher
than DMP-14 as in Table 4. The main reason is that over-
segment of body parts may distribute less visible pixels to
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3DOH
Method MPVE MPJPE PMPJPE
DMP-24 - 246.4 208.5
DMP-14 w/o synthetic occlusion - 135.4 115.7
DMP-14-Nonoccluded - 87.3 64.7
DMP-14 - 128.4 109.8
IK-14 w/o gaussian noise 138.2 115.7 82.8
IK-14 w/o random zero 139.5 116.8 83.2
IK-14 133.5 112.9 80.8
UVI-14 w/o IK-14 82.9 69.4 58.1
UVI-14 w/o DMP-14 80.1 67.8 55.1
UVI-14 w/o ℓdismag 75.5 63.8 47.3
UVI-14 72.3 58.3 44.6

Table 4. Ablation study about reconstruction errors on 3DOH test
set. 14 and 24 denotes the number of joints setting for training and
evaluations. Nonoccluded denotes when we calculate error we are
not counting the part without any visible image evidence.

certain parts (feet, hand) and will lead to higher error.

Occlusion vs Non-occlusion When computing the
MPJPE for Jinitial, the results for visible parts (part with
any pixel belong to them visible) and invisible parts differ a
lot. We compare the DMP-14 and DMP-14-Nonoccluded in
Table 4. We find visible parts with 87.3 mm MPJPE while
the MPJPE counting invisible parts yield 128.4 mm. It tells
us if the joints are visible, our DMP can predict relative
good initial results. Thus, synthetic occlusion helps for our
DMP module. When we remove the data augmentation
techniques like synthetic occlusion [38], DMP-14 increase
to 135.4 mm.

GIK-Net data augmentations We also try to remove the
gaussian noise or random mask out joints data augmentation
techniques for MOCAP data, which serve as input for the
GIK-Net, to see how is the MPJPE varying. As shown in
Table 4, IK-14 w/o gaussian noise and IK-14-w/o random
zero yield larger error (2.8 mm and 3.9 mm ) compared with
IK-14. It demonstrate these data augmentation makes the
GIK-Net more robust to noise and helps generalize to real
data input.

UVI ablations As the magnitude of our UVd should be
symmetric, we introduce the magnitude error for UVd and
its flip version. We run a model without this ℓdismag and
observe there is 4.5 mm error increase in MPJPE metric.
This is shown in Table 4.

Each stage performance DMP module is a nonparamet-
ric method, while IK module is a model-based method rely-
ing on the output of DMP and then correct it. UVI module

Figure 9. Failure cases. (Best viewed in color)

relies on both nonparametric output and model-based out-
put, and predict the final body joint and mesh. Based on Ta-
ble 4, DMP-14 estimate from raw images and gives inferior
performance. IK-14 corrects the output from DMP-14 and
reduce the error by 15.5 mm. UVI-14 relies on both IK-14
and DMP-14 and further reduce MPJPE to 58.3 mm. How-
ever, if any of the previous stage output is missing, MPJPE
increase by 11.1 mm (w/o IK-14) or 8.5 mm (w/o DMP-14).

4.3. Qualitative Results

We present qualitative results in Fig 8 including the
joints prediction from DMP, IK, UVI modules and mesh
prediction from IK, UVI modules.

Limitations We also show failure cases in Fig 9. Typical
failure cases can be attributed to challenging poses (a,b,d),
and crowded scenarios (c).

5. Conclusion

We propose a framework that combine the best of both
worlds (nonparametric and SMPL model-based method). It
predicts the initial 3d body pose from DMP module, refine
the predicted pose and repose the template SMPL meshes
using IK module. Based on the nonparametric prediction
from DMP module and model-based prediction from IK
module, the UVI module inpaint and refine the prediction.
To alleviate the intrinsic error introduced by joint regres-
sor (fitting), we regress joint (UVj) and mesh (UVl) sep-
arately in different maps in UV space. We also introduce
the magnitude loss ℓdismag to enforce the symmetric prop-
erty of human (UVd). Our framework achieves state-of-the-
art performance among 3D mesh-based methods on several
public benchmarks. Future work can focus on extending
the framework to the reconstruction of full body surfaces
including hands and faces.
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