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Abstract

Human affective behavior analysis has received much at-
tention in human-computer interaction (HCI). In this paper,
we introduce our submission to the CVPR 2022 Competition
on Affective Behavior Analysis in-the-wild (ABAW). To fully
exploit affective knowledge from multiple views, we utilize
the multimodal features of spoken words, speech prosody,
and facial expression, which are extracted from the video
clips in the Aff-Wild2 dataset. Based on these features, we
propose a unified transformer-based multimodal framework
for Action Unit detection and also expression recognition.
Specifically, the static vision feature is first encoded from
the current frame image. At the same time, we clip its ad-
jacent frames by a sliding window and extract three kinds
of multimodal features from the sequence of images, audio,
and text. Then, we introduce a transformer-based fusion
module that integrates the static vision features and the dy-
namic multimodal features. The cross-attention module in
the fusion module makes the output integrated features fo-
cus on the crucial parts that facilitate the downstream de-
tection tasks. We also leverage some data balancing tech-
niques, data augmentation techniques, and postprocessing
methods to further improve the model performance. In the
official test of ABAW3 Competition, our model ranks first in
the EXPR and AU tracks. The extensive quantitative evalu-
ations, as well as ablation studies on the Aff-Wild2 dataset,
prove the effectiveness of our proposed method.

1. Introduction
Human affective behavior analysis plays a significant

role in human-computer interaction. The basic expres-
sions, Action Units (AU), and Valence-Arousal (VA), as
three commonly-used expression representations, are usu-
ally used to infer human emotions. AU explains human ex-
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Figure 1. The sketch of our proposed transformer-based multi-
modal information fusion framework for AU detection and expres-
sion recognition. The transformer-based fusion module is used
to integrate the static vision feature and dynamic multimodal fea-
tures.

pression from the view of facial muscle movement based
on the Facial Action Coding System (FACS) [10]. The basic
expression uses discrete and explicit definitions to represent
human expressions. Valence and Arousal are two continu-
ous values used to describe human emotion states. How-
ever, most existing datasets [16, 30, 53, 54] contain only
one of the three representations. Different from them, Aff-
Wild [20,21,23,49] and Aff-Wild2 [19,22,24–26] containing
all the three representation labels have received consider-
able attention from both academic and industrial communi-
ties. Also, the videos in the Aff-Wild2 [19, 22, 24–26] show
human spontaneous affective behaviors in the wild, pushing
the affective analysis to fit with the real-world scenarios.

Considering the fact that visual expression, spoken
words, and speech prosody also imply rich emotion infor-
mation, we propose a transformer-based multimodal infor-
mation fusion framework for AU detection and expression
recognition (See Fig. 1). First, a static vision feature extrac-
tor is used to capture the vision expression feature of the
static image. Then we employ the sliding windows to ob-
tain the sequence of adjacent frames, audio, and text. Based
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on the three kinds of multimodal signals, we capture the
corresponding prior features by some pretrained models or
open-sourced tools. In particular, we employ the pretrained
DLN [52] to extract the expression embedding feature of the
cropped faces sequence. The sequence of audio features,
extracted by the open-sourced librosa tool [29], consists of
MFCC, pitch, and short-time energy. Also, we obtain the
spoken words by ASR tools [34] and produce their word
embedding based on the pretrained Bert [9].

After obtaining these features, the dynamic uni-modal
features combined with the static vision feature are fed into
a transformed-based fusion module. The static vision fea-
ture is injected into the multi-head cross attention module as
K and V for attention coefficient computation. In this way,
we can effectively integrate the static vision features and
dynamic multimodal features. The integrated multimodal
features are forced to pay more attention to key point parts
for the current frame detection task. In addition, to alleviate
the serious imbalance in the expression recognition train-
set, we resample the training samples based on the number
of categories and video frames. Remix [5] data augmenta-
tion is also used to relieve the imbalance. Considering that
the expression labels seldom change rapidly in continuous
sequence frames, we propose the filter strategy to smooth
the final prediction results.

In sum, the contributions of this work are three-fold:

• To fully exploit the in-the-wild emotion information,
we utilize the multimodal information from the im-
ages, audio and text and propose a unified multimodal
framework for AU detection and expression recogni-
tion. With the valid prior multimodal information, our
model realizes the effective affective analysis from dif-
ferent views.

• We introduce a transformer-based fusion module for
integrating the static vision feature and dynamic mul-
timodal features. With the multi-head cross-attention,
the output integrated features capture the crucial infor-
mation for affective analysis. In the ABAW3 competi-
tion, our method ranks first in both AU and expression
tracks. The final test set score and quantitative experi-
ments can prove the superiority of our method.

2. Related works
In this section, we will introduce some related works

about the facial expression representations, AU detection,
and expression recognition.

2.1. Facial expression representations

The main challenges in the 3rd Workshop and Competi-
tion on Affective Behavior Analysis in-the-wild (ABAW)
are about the commonly-used facial expression represen-

tations: AU, basic expression categories, and Valence-
Arousal. Ekman et al. [10] first introduces the definition
of the AUs from the Facial Action Coding System (FACS),
which contains 32 atomic facial action descriptors based on
the movements of the facial muscles. The basic expres-
sion categories describe human affection by seven discrete
semantic definitions, namely Anger, Disgust, Fear, Happi-
ness, Sadness, Surprise, and Neutral. Valence-Arousal de-
scribes the emotion state of humans by two continuous val-
ues. Valence indicates how positive or negative is the human
affective behavior and Arousal indicates how active or pas-
sive is the human affective behavior. The values of Valence
and Arousal are between -1 and 1. Except for the above
representations, recently a compact and continuous expres-
sion embedding [41] is proposed to represent fine-grained
human expressions. The main idea of it is to reserve the
expression similarity on a low dimensional space.

2.2. AU detection

In the area of AU detection, one of the main challenges
is the bad generalization caused by the limited identities
in the commonly-used AU datasets. Therefore, numerous
works focus on introducing more additional information to
enhance the detection task. To facilitate the model with lo-
cal features, multi-task methods usually combine AU de-
tection with landmark detection [2, 36] or landmark-based
attention map prediction [11]. SEV-Net [46] proposes to
utilize the textual descriptions of local details to generate a
regional attention map.

In ABAW2 competition, multi-task [14, 39, 42, 51] that
combines the tasks of expression recognition or VA de-
tection is often employed to add underlying features for
AU task. Zhang et al. [51] pretrain the backbone on the
DLN [52] and propose a streaming multi-task framework,
winning first place in AU and EXPR tracks. Jin et al. [14]
with multi-task framework also introduce the multimodal
information from audio and visual signals, winning second
place in AU and EXPR tracks.

In ABAW3 competition, Jiang et al. [13] pretrain the
feature extractor on Glint360K and some private commer-
cial datasets before conducting the AU detection task in
the ABAW3. They achieve second place in the AU track.
Savchenko et al. [35] also pretrain the backbone on large fa-
cial expression datasets and finetune it for AU detection or
expression recognition. They rank 5-th in the AU track and
4-th in the EXPR track. Transformer [40] is also often used.
Wang et al. [44] proposed a two-stream transformer-based
framework to model the inherent relationships of AUs. Tal-
lec et al. [38] and Nguyen et al. [31] use the transformer-
based architecture for the multi-label AU detection, taking
advantage of the self-attention and cross-attention modules
to learn the local features for each action unit. Multimodal
information like audio is also introduced in AU task [44].
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Figure 2. The pipeline of our proposed multimodal framework for AU detection and expression recognition. The static vision feature
extractor captures the static vision expression features hs from the current frame. Three dynamic multimodal feature extractors with the
multimodal sequence information as input focus on providing emotion features from different views. The transformer-based fusion module
is used to incorporate the static and dynamic multimodal features. The output features from three transformer-based fusion modules
concatenated with hs are sent into the multilayer perceptron (MLP) for detection tasks.

2.3. Expression recognition

Expression recognition aims to identify the basic expres-
sion categories of humans, such as anger, disgust, fear, hap-
piness, sadness, surprise, etc. Recently, benefiting from
the development of the neural network, deep-learning-based
approaches are applied to end-to-end expression recogni-
tion. Some works [3, 15] employ CNN to extract the spa-
tial and temporal features and improve expression recogni-
tion. Some other works [6, 17] utilize LSTM to model the
temporal dependencies and characteristics within consecu-
tive facial images. To focus on the most relevant features,
some recent works introduce the attention mechanism into
CNN [4, 27, 47, 48].

In the ABAW2 Competition, the winner in EXPR track
[51] leverages an identity-invaraint expression feature and
develops a multi-task streaming network to extract inter-
action relationships among three modal representations.
Thinh et al. [39] takes advantage of the multi-task learning
technique by combining the knowledge for two correlated
tasks, AUs prediction and emotion classification. Deng et
al. [8] is dedicated to solving the problem of emotion un-
certainty and proposes a framework that predicts both emo-
tions labels and the estimated uncertainty. Then, this work
improves emotion recognition and uncertainty estimation
by the self-distillation algorithm. Jin et al. [14] use both
AU and expression annotations to train the model and apply
a sequence model to further extract associations between
frames in sequences. Wang et al. [43] aims to tackle the
problem of incomplete labeled datasets in multi-task affec-

tive behavior recognition methods. This approach trains
a semi-supervised model as the teacher network to predict
pseudo labels for unlabeled data. Then these pseudo labels
are utilized for student network training, which allows it to
learn from unlabeled data.

In the ABAW3 Competition, other teams also propose
effective frameworks. Jeong et al. [12] use the affinity loss
to train the feature extractor from the images. And a multi-
head attention network in an orchestrated fashion is pro-
posed to extract diverse attention for expression recogni-
tion. To distinguish the similar expressions, Xue et al. [45]
propose a two-stage framework, named CFC networks, to
separately predict negative expressions and the other kinds
of expressions. Savchenko et al. [35] develop a real-time
framework through a lightweight EfficientNet model, which
may be even implemented for video analytics on mobile de-
vices. Phan et al. [32] employs the pre-trained model Reg-
Net [33] as the backbone and then introduces Multi-Head
Attention and Transformer Encoder to generate sequence
representations. Kim et al. [18] develop a three-stream net-
work consisting of a visual stream, a temporal stream, and
an audio stream, based on Swin transformer [28] as the
backbone.

3. Method

The architecture of the proposed transformer-based mul-
timodal framework is shown in Fig. 2. The whole frame-
work consists of a static vision feature extractor, three
dynamic multimodal feature extractors and a transformer-
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Figure 3. The structure of the transformer-based fusion module.
Different from the original transformer decoder, its second multi-
head cross attention uses the static vision feature hs as K and V .

based fusion module. The static vision feature extractor
captures the static vision expression features from the cur-
rent frame. Also, the sequences of the cropped face frames,
audio, and spoken words from the two seconds around the
current frame are sent into the corresponding modal feature
extractor to provide more dynamic emotion information that
facilitates AU detection and expression recognition. Then,
the proposed transformer-based fusion module is responsi-
ble for integrating the static vision feature and the dynamic
multimodal information. The output of each modal fusion
module and the static vision feature are concatenated for
the final recognition task. Besides, to alleviate the imbal-
anced problem, we use the resample strategy and remix [5]
data augmentation in the training process. A filter strategy
is also utilized for smoothing the predictions.

3.1. Multimodal feature extraction

It is commonly acknowledged that human usually con-
veys and perceives emotion state from vision, audio and
text. Based on this observation, it is a straightforward idea
to combine multimodal features for full emotion informa-
tion collection. The proposed framework takes advantage
of the three modal information and extracts the correspond-
ing original features from some pretrained models or open-
sourced tools.

Specifically, the static vision feature extractor with the
structure of Inception-Resnet [37] is used to capture the vi-
sion features hs of the current frame for its affective analy-
sis. To obtain an effective parameter initialization, we make
our static vision feature extractor pretrained on the expres-
sion embedding task [52] by the distillation. It is proven that
the expression embedding can represent the complex and
fine-grained human expressions [52]. It is of great value to

expression-related tasks like AU detection and expression
recognition.

Besides, we consider the dynamic multimodal informa-
tion. We choose M adjacent frames before and after the
current frame and compute their expression embedding fea-
tures by the pretrained DLN network [52]. In our exper-
iments, we set M to 60. The output expression embed-
ding sequence is represented as re. Likely, we extract the
MFCC, pitch, and short-time energy features from the audio
during these frames and concatenate them as audio features
sequence ra. We choose these kinds of raw audio features
due to their robustness. Also, the spoken words during these
frames can be obtained by the open-source ASR tools [34]
and they are encoded by pretrained Bert model [9]. rw is
the output sequence of the word embedding extractor.

3.2. Transformer-based fusion module

To effectively integrate the static and dynamic mul-
timodal features, we propose a transformer-based fusion
module that makes different modal sequence features focus
on the current frame detection task. More concretely, re, ra
and rw from the dynamic multimodal feature extractors are
first encoded by 4 GRU [7] for capturing their individual
dynamic features he, ha and hw.

Then, we choose the decoder structure of trans-
former [40] as our fusion module (See Fig. 3) to integrate
the static vision feature hs and other dynamic modal fea-
tures. As shown in Fig. 3, different from the original trans-
former decoder, the K and V of the second multi-head at-
tention are replaced by the hs. As a result, the output of the
second multi-head attention can be followed:

Attention(Q,K, V ) = Attention(h
′

(.), hs, hs)

= softmax(
h

′

(.)h
T
s√

dk
)hs

(1)

Where dk is the dimension of hs, h
′

(.) is each modal in-
put feature of the second multi-head cross attention mod-
ule. The correlation between the current frame static vision
information and the uni-modal dynamic feature can be built
by the attention computation. The output integrated fea-
tures can focus on the key point parts for the current frame
detection task.

3.3. Training

Except for the framework structure, some network de-
tails and training tricks are introduced in this part.
Resampling. Due to the serious imbalance of the expres-
sion recognition training set, we resample the training sam-
ples from the original dataset. We observe that both cate-
gory imbalance and identity imbalance exist in the training
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dataset. If a video contains more than N frames of a partic-
ular class, we randomly sample N frames of that class from
the video. We set N to 200 and 50 for the minority classes
(Anger, Disgust, Fear, Sadness, and Surprise ) and the ma-
jority classes (Neutral, Happiness, and Other) respectively.
In this way, we can avoid the model overfitting to the spe-
cific identities and the majority classes.
Data augmentation. Except for the commonly-used data
augmentation operations like rotation, color jitter, cen-
ter crop, Flip, etc, we take advantages of remix [5] that
considers the imbalanced categories based on the original
mixup [50]. It controls the soft labels of mixed samples
more biased towards the minority classes. The process can
be followed:

xnew = λxi + (1− λ)xj

ynew = λyyi + (1− λy)yj
(2)

In particular, the input of the model (xnew) is the mixed
sample that is linearly combined from an arbitrary sample
pair (xi and xj) by a mixing factor λ. λ is sampled from the
beta distribution. Different from mixup [50], λy is related
to the labels of the sample pair. The rule for λy is:

λy =

0 ni/nj ≥ κ and λ < τ
1 ni/nj ≤ 1/κ and 1− λ < τ
λ otherwise

(3)

where ni and nj is the number of samples with the label of
yi and yj . κ and τ are two hyper-parameters and are usually
set as 3 and 0.5. In this way, when one mixed sample is from
one minority class and one majority class, the mixed label
will be dominated by the minority class.
Post-process. It can be observed that expression labels sel-
dom rapidly change in a continuous sequence of frames.
Therefore, we use the filter operation to smooth the model
prediction results, removing some glitches in the temporal
sequences. In particular, for each hopping point in the se-
quences of predictions, we first calculate the number of con-
secutive frames with the same prediction labels. If the num-
ber of consecutive frames is less than the threshold, we con-
sider these points as outliers and count the most common
values in adjacent frames to correct the hopping points. In
addition, due to the data imbalance, we use a lower thresh-
old and smaller adjacent window length for the minority
classes in Aff-Wild2 [19] dataset.
Loss function. For AU detection, we utilize the cross-
entropy loss function LAU CE and circle loss function
LAU Circle like the work [51] for training. For expression
recognition, we use the cross-entropy loss LEXPR CE for
training. In AU detection task, the direct output of the MLP
is S = {s1, s2, ..., s12} ∈ R12 without scaling. The AU
probability Ŷ = {ŷ1, ŷ2, ..., ŷ12} can be computed by sig-
moid activation function for the output S , and the ground-
truth binary AU label is Y = {y1, y2, ..., y12} ∈ B12,B =

{0, 1}, where 1 denotes the corresponding action unit is ac-
tivated and vice versa. The loss functions for AU task can
be formulated as:

LAU CE = − 1

12

12∑
j=1

[yj log ŷj + (1− yj) log(1− ŷj)]. (4)

LAU Circle = log(1 +
∑
i∈Ω0

esi) + log(1 +
∑
j∈Ω1

e−sj ),

Ω0 = { i | if yi = 0 },
Ω1 = { j | if yj = 1 }.

(5)

In EXPR task, the softmax output of the MLP is Ẑ =
{ẑ1, ẑ2, ..., ẑ8}, and the one-hot ground-truth EXPR label is
Z = {z1, z2, ..., z8} ∈ C8,C = {0, 1}. The loss function
for EXPR task can be formulated as:

LEXPR CE = −1

8

8∑
j=1

zj log ẑj . (6)

4. Experiments
In this section, we will first introduce our used datasets

and the implementation details. Then we evaluate our
model on the ABAW3 competition metrics. To prove the
effectiveness of each module in our framework, We also
present several ablation studies.

4.1. Datasets

The 3rd Workshop and Competition on Affective Behav-
ior Analysis in-the-wild provides the Aff-wild2 datasets as
the official datasets. It contains 564 in-the-wild videos and
around 2.8M frames from Youtube. Most of them show
human spontaneous affective behaviors. In detail, there
are 548 videos in Aff-wild2 [19] annotated with 12 AUs,
namely AU1, AU2, AU4, AU6, AU7, AU10, AU12, AU15,
AU23, AU24, AU25, and AU26. The ABAW3 competi-
tion provides 295 of them as the trainset, 105 of them as
the validation set, and 141 of them as the test set. Aff-
wild2 [19] contains 548 videos annotated with discrete ex-
pression categories, namely neutral, happiness, anger, dis-
gust, fear, sadness and surprise, and other. Different from
the ABAW2 [26], the new added other class means the ex-
pression state is different from the other seven basic expres-
sions. The ABAW3 competition provides 248 of them as
the trainset, 70 of them as the validation set, and 228 of
them as the test set. Aff-wild2 [19] contains 567 videos an-
notated with valence and arousal. The ABAW3 competition
provides 341 of them as the trainset, 71 of them as the vali-
dation set, and 152 of them as the test set. ABAW3 creates
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Val Set AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU15 AU23 AU24 AU25 AU26 Avg.
Official 55.3 48.9 56.7 62.8 74.4 75.5 73.6 28.1 10.5 20.8 83.9 39.1 52.5
fold-1 60.2 55.1 58.6 65.3 74.8 77.8 71.8 24.2 13.8 26.3 87.7 39.6 54.6
fold-2 66.9 54.3 66.1 62.8 78.9 71.8 73.6 15.2 7.80 31.6 85.4 38.4 54.4
fold-3 59.1 51.9 59.3 67.8 79.3 73.6 74.5 27.1 12.9 16.2 84.9 35.4 53.5
fold-4 54.7 49.9 55.2 69.6 73.1 74.4 72.9 30.2 10.8 21.5 82.0 30.9 52.1
fold-5 62.3 57.4 54.2 64.5 76.2 76.1 72.3 28.7 11.8 19.4 86.8 33.7 53.6

Table 1. The AU F1 scores (in %) of models that are trained and tested on different folds (including the original training/validation set of
Aff-Wild2 dataset). The highest and lowest scores are both indicated in bold.

Val Set Neutral Anger Disgust Fear Happiness Sadness Surprise Other Avg.
Official 57.6 34.7 14.0 20.0 53.3 43.0 37.9 54.7 39.4
fold-1 54.6 39.1 10.0 23.3 50.6 34.7 35.3 55.9 37.9
fold-2 61.4 8.10 31.7 38.7 60.2 33.4 40.2 55.1 41.1
fold-3 65.8 29.9 19.8 22.0 51.7 23.6 27.8 61.9 37.8
fold-4 54.2 33.9 6.0 14.1 60.3 21.9 48.5 59.6 37.3
fold-5 56.4 25.7 5.0 8.1 60.0 29.7 41.8 62.3 36.1

Table 2. The expression F1 scores (in %) of models that are trained and tested on different folds (including the original training/validation
set of Aff-Wild2 dataset). The highest and lowest scores are both indicated in bold.

a static version of Aff-wild2 [19] s-Aff-wild2 that is used
in the Multi-task learning challenge. The ABAW3 competi-
tion provides 145,273 frames as the trainset, 27,087 frames
as the validation set, and 51,245 frames as the test set. The
official use F1 score as the metric for AU detection and ex-
pression recognition and Concordance Correlation Coeffi-
cient as the metric for VA detection. We use the official
trainset for training and evaluate our model on the official
validation set in the AU and EXPR tracks. Final scores of
ABAW3 competition are computed on the unseen official
test set.

4.2. Implementation details

We use OpenCV to process all videos in the Aff-Wild2
dataset [24] into frames and crop all facial images into
224×224 scale by OpenFace [1] detector. The static vision
feature extractor is initialized by the pretrained expression
embedding model distilled from DLN [52]. The audio fea-
ture extraction relies on the open-sourced tool librosa [29].
We obtain the spoken words by the open-sourced ASR
tool [34] and extract their word embedding by the pretrained
Bert [9] model. Our training process is implemented based
on PyTorch. The training procedure runs about 20 epochs
on an NVIDIA RTX 3090 graphics card with a learning rate
of 0.002 and batch size of 80. We use a stochastic gradi-
ent (SGD) optimizer with a cosine annealing warm restart
learning rate scheduler.

4.3. Results on the validation set

The official ABAW3 provides the official train-
ing/validation/test set based on the videos. To relieve the
disturbance caused by different dataset divisions, we also
perform the 5-fold random cross-validation. Tab. 1 and
Tab. 2 presents the AU detection results of the official val-
idation set and our 5-fold validation sets. From the above
table, it can be observed that the different dataset division
results in the fluctuating average F1 score, especially for
the expression recognition task. The AU average F1 score
ranges from 52.1% to 54.6% while the expression average
F1 score ranges from 36.1% to 41.1%. The reason is that
the trainset contains limited identities, especially for the mi-
nority classes. To alleviate the bad influence, we make the
final decisions for the test set prediction by voting on these
models using different dataset divisions.

4.4. Results on the test set

We present the final results on the official test set for AU
detection and expression recognition task in the Tab. 5 and
Tab. 6. In particular, our method achieves 49.9% F1 score
in AU track and 35.9% F1 score in EXPR track, winning
the first prizes in the AU and EXPR tracks.

Observing these methods, Transformer structure is usu-
ally used. Tallec et al. [38] and Nguyen et al. [31] use it on
the vision feature for AU detection. Phan et al. [32] use it
for expression recognition. Wang et al. [44] use the trans-
former encoder structure to model the relationships between
different AUs. Also, it is practical to use extra datasets for
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Condition AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU15 AU23 AU24 AU25 AU26 Avg.
only static 54.0 44.9 53.1 62.9 73.1 74.1 74.3 26.7 13.0 16.8 82.2 35.5 50.9
w/o exp emb 53.3 42.8 55.3 62.3 75.0 75.2 74.8 28.2 11.1 19.8 83.8 32.7 51.2
w/o audio 55.2 49.6 57.4 63.7 75.1 75.1 74.1 15.0 4.20 21.6 83.7 40.0 51.2
w/o word 56.9 49.7 55.0 62.8 75.5 72.3 73.1 15.3 7.70 28.6 74.6 37.9 50.8
w/o trans 53.5 42.2 54.6 62.0 73.8 74.0 73.3 29.9 16.5 24.0 82.9 33.1 51.7
Ours 55.3 48.9 56.7 62.8 74.4 75.5 73.6 28.1 10.5 20.8 83.9 39.1 52.5

Table 3. Ablation study results of different modality features and transformer-based fusion module for AU detection task. All scores are
computed based on the official validation set.The highest is indicated in bold.

Condition Neutral Anger Disgust Fear Happiness Sadness Surprise Other Avg.
only static 62.1 27.7 2.32 3.98 49.1 15.3 30.1 45.4 29.5
w/o exp emb 62.7 45.6 10.3 11.5 51.7 17.9 30.3 57.4 35.9
w/o audio 65.3 41.9 5.06 10.7 54.4 32.0 30.2 50.6 36.3
w/o word 60.8 45.1 2.20 18.8 48.3 23.3 25.8 36.4 32.6
w/o trans 64.2 33.6 3.00 23.3 55.0 28.4 31.0 52.5 36.4
Ours 57.6 34.7 14.0 20.0 53.3 43.0 37.9 54.7 39.4

Table 4. Ablation study results of different modality features and transformer-based fusion module for Expression recognition task. All
scores are computed based on the official validation set. The highest is indicated in bold.

Method AU Avg F1 score
Tallec et al. [38] 44.3
Savchenko et al. [35] 47.3
Wang et al. [44] 48.8
Nguyen et al. [31] 49.0
Jiang et al. [13] 49.8
our method 49.9

Table 5. The AU F1 scores (in %) of different models on the offi-
cial Aff-wild2 test set. The highest is indicated in bold.

Method EXPR Avg F1 score
Kim et al. [18] 27.2
Phan et al. [32] 28.6
Savchenko et al. [35] 30.3
Xue et al. [45] 32.2
Jeong et al. [12] 33.8
our method 35.9

Table 6. The expression F1 scores (in %) of different models on
the official Aff-wild2 test set. The highest is indicated in bold.

pretraining [13, 35]. Xue et al. [45] propose a Coarse-to-
Fine network to improve the prediction for the hard negative
expression classes.

Different from them, we use more valid multimodal fea-
tures. Also, our transformer decoder structure is for multi-
modal feature fusion.

4.5. Ablation study

To prove the effectiveness of the multimodal features and
our transformer-based fusion module, we conduct ablation
studies by comparing the models trained without the cor-
responding features or modules. We present the quantita-
tive results for AU detection and expression recognition in
Tab. 3 and Tab. 4. As shown in the tables, each modality
and our fusion module can facilitate AU detection and ex-
pression recognition.
Multimodal features. To indicate the effectiveness of
the dynamic multimodal features, we compare our com-
plete model with the model that only uses static vision fea-
tures (only static). From the Tab. 3 and Tab. 4, it can be
observed that multimodal features bring about a distinctive
improvement for both AU and expression tasks. Next, we
will give a detailed analysis of each modality’s features.

To verify the benefits of the expression embedding fea-
tures, we conduct an ablation study by removing the expres-
sion embedding extractor (w/o exp emb). From the Tab. 3
and Tab. 4, it can be observed that the expression embed-
ding feature plays an important role in AU and expression
tasks. Without it, AU average F1 score falls from 52.5% to
51.2% and the expression average F1 score falls from 39.4%
to 35.9%.

To prove the effectiveness of the word embedding fea-
tures, we compare our complete model with the model with-
out the word embedding extractor (w/o word). As shown in
Tab. 3 and Tab. 4, without word feature, AU average F1
score falls from 52.5% to 50.8% and expression average F1
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score falls from 39.4% to 32.6%. It can be observed that
word embedding features play a more important role in ex-
pression recognition than AU detection.

Likely, we conduct the ablation study by removing the
audio features extractor (w/o audio) to prove the effective-
ness of the MFCC, pitch, and energy features. As shown
in Tab. 3 and Tab. 4, without audio features, AU average
F1 score falls from 52.5% to 51.2% and expression aver-
age F1 score falls from 39.4% to 36.3%. It can be indicated
that audio information can facilitate the AU and expression
tasks.
Transformer-based fusion module. We perform an abla-
tion study by replacing the transformer-based fusion mod-
ule with concatenation to evaluate its significance. In the
Tab. 3 and Tab. 4, without the fusion module, AU average
F1 score falls from 52.5% to 51.7% and expression aver-
age F1 score falls from 39.4% to 36.4%. This proves that
the transformer-based fusion module promotes the model
performance effectively. In addition, the rising degree of
F1 score brought by the fusion module is slightly less than
multimodal features overall. This indicates that multimodal
features are more important.

5. Conclusion
In this paper, we introduce our transformer-based multi-

modal information fusion framework for AU detection and
expression recognition in the ABAW3 Competition. We
propose to exploit the static vision feature and three kinds
of dynamic multimodal features to fully collect the human
emotion clues. Besides, to integrate the static features and
dynamic multimodal features, we utilize the transformer de-
coder structure. In participating in the ABAW3 competi-
tion, we won the first prizes in the AU track and EXPR
track. The competition results prove the superiority of our
method. Also, the quantities ablation studies indicate that
each multimodal feature and fusion module can improve the
model performance for affective tasks.
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