1. Qualitative Results

We show more qualitative results on COCO [3] in Fig 1, and 3DOH [8] in Fig 2.

2. Part Segmentation in UV Space

We first use the reference T-pose mesh and the LSP joint regressor provided by [1, 7] to get the T-pose 14 joint location. Then we calculate the joint-vertex euclidean distance and assign vertex to joint based on the smallest distance. After that, we use the barycentric interpolation (mapping between vertex triangle and UV space triangles) to get the UV space assignment probability \((128 \times 128 \times 14)\). Following these operations, we use argmax to get the final assignment for each UV grid to the joint location.

3. Implementation Details

For AMASS [5] data, we only get SMPL-H [6] fitting instead of SMPL fitting data, however, SMPL-H does not included hands rotations as in SMPL. We sample random rotations from SPIN [1] fitting or the predictions from our DMP stages for its training data. For AIST++ [2], it does not included \(\beta\) parameters, we sample \(\beta\) from SPIN [1] fitting or the predictions from our DMP stages for its training data. We use the original rotation representation from SMPL [4] (axis-angle representation) for the fast training purpose.

References

Figure 1. More qualitative results on COCO dataset. (Best viewed in Color)
Figure 2. More qualitative results on 3DOH dataset. (Best viewed in Color)