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Abstract

Temporal localization of driving actions plays a crucial
role in advanced driver-assistance systems and naturalistic
driving studies. However, this is a challenging task due to
strict requirements for robustness, reliability and accurate
localization. In this work, we focus on improving the over-
all performance by efficiently utilizing video action recog-
nition networks and adapting these to the problem of action
localization. To this end, we first develop a density-guided
label smoothing technique based on label probability dis-
tributions to facilitate better learning from boundary video-
segments that typically include multiple labels. Second, we
design a post-processing step to efficiently fuse information
from video-segments and multiple camera views into scene-
level predictions, which facilitates elimination of false pos-
itives. Our methodology yields a competitive performance
on the A2 test set of the naturalistic driving action recog-
nition track of the 2022 NVIDIA AI City Challenge with an
F1 score of 0.271.

1. Introduction
Efficient, fast, and safe transportation is one of the im-

portant foundations of modern society and a major driv-
ing factor of the economy. Every day, billions of peo-
ple rely on various forms of transit, including road trans-
portation. However, frequent use of road transportation
also has drawbacks. For instance, the annual road traffic
deaths were estimated at 1.25 million in 2013 [1]. Immense
research is being conducted on advanced driver-assistance
systems (ADAS) to enhance the safety and comfort of road
transportation.

The ultimate aim of ADAS is to completely automate
road transportation, while ensuring safety by eliminating
human factors of road accidents. However, this automation

Figure 1. Diagram of joint task of action classification and local-
ization. From top to bottom: example images of the phone call,
reaching behind, and pick up from floor action classes. The graph
shows an ideal output, where not only classes but also the start and
end times (ts[i], te[i]) of actions are visible.

task is difficult due to the complex nature of the problem,
variability of environmental conditions, and the strict re-
quirements for high robustness and reliability. In the current
state, ADAS requires human supervision to ensure safety
while gradually addressing increasingly complex driving
tasks. This approach requires continuous attention of the
driver, since over-confidence by the driver in such sys-
tems may cause deadly accidents. Consequently, the need
for real-time monitoring of the driver’s alertness arises and
novel computer vision methodologies are being researched
to satisfy this requirement in an automated fashion.
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For a practical implementation of driving action recog-
nition, it is necessary both to correctly classify the specific
action of the driver and to temporally localize this action,
since the videos in the wild are untrimmed and may include
multiple classes at once. This problem is usually referred to
as temporal action localization in literature. Many previous
works on this subject are inspired by two-stage, proposal-
generation and classification methodologies that were ini-
tially devised for the problem of object detection [2, 3]. Al-
ternatively, the straightforward approach of using a tempo-
ral sliding window has also been popular in literature [4,5].
In the sliding-window approach, action classification is per-
formed for every overlapping segment of the input video,
and the resulting class probabilities for each segment are
fused in a post-processing step. While this approach pro-
vides solid overall performance, the localization accuracy
usually suffers from segments that include multiple action
classes. To alleviate this shortcoming, in this work, we
propose density-guided label smoothing to improve local-
ization performance. The associated loss function consid-
ers the distribution of class labels in each training video
segment, thereby enabling better control over the perfor-
mance trade-off of classification and temporal localization
sub-tasks. Furthermore, we design a post-processing step
for multi-camera fusion and prediction distillation. This
design includes the phases of: (1) efficient late-fusion of
the predictions across multiple cameras, (2) preservation of
sharp temporal changes in class probabilities, and (3) elimi-
nation of temporally overlapping detections. To summarize,
the main contributions of our work are as follows.

• A smoothed multi-label training loss which facilitates
better learning from temporal boundary segments. The
improved performance comes without any additional
computational overhead during inference.

• An efficient post-processing step that eliminates false
positives and improves the overall performance.

• An evaluation of the proposed method on the A2 test
set of the naturalistic driving action recognition track
of the 2022 NVIDIA AI City Challenge. Our method
shows promising results with an F1 score of 0.271.

2. Related Work
This section presents a literature overview of video fea-

ture extraction, temporal action localization, and driving ac-
tion recognition datasets.

Video feature extraction. Extracting features from
given videos is a crucial first step to many advanced scene
understanding tasks, such as action recognition and video
anomaly detection. As such, this problem has been exten-
sively studied. Early approaches to the problem focus on

handcrafted motion features, such as Hidden Markov Mod-
els [6, 7], sparse coding [8, 9], histogram of oriented gra-
dients (HOGs) [10–12], and appearance features [12, 13]
Besides handcrafted feature extraction, deep learning-based
methods have been recently proposed for video action
recognition tasks. Especially convolutional neural network-
based (CNN) architectures [14] have provided solid perfor-
mance. Various 2D-CNN methods [15–17], 3D-CNN meth-
ods, such as C3D [18], I3D [19] and ResNet3D [20], and
combinations of both [21, 22] are used for spatio-temporal
feature extraction. Similarly, the SlowFast [23] network
processes videos at both low and high frame rates to simul-
taneously capture short-term and long-term temporal infor-
mation by employing two pathways.

Temporal action localization. Revealing the tempo-
ral locations of important events in untrimmed videos is a
challenging task. Early approaches [5, 24, 25] apply tem-
poral sliding windows as an exhaustive search solution to
the localization, which is followed by a support vector ma-
chine (SVM) to classify actions within each window posi-
tion. Besides sliding-window approaches, object detection-
inspired [26] proposal generation methodologies have been
employed. For instance, in [2], authors use dilated convolu-
tions to encode temporal context and perform multi-stream
feature fusion to improve action localization. In [3], Zeng et
al. concentrate on capturing the context information and
characterize the correlations between distinct actions by im-
plementing Graph Convolutional Networks (GCNs).

Driving action recognition datasets. Quality of
datasets is of utmost importance, especially for the data-
hungry deep learning-based approaches. Some datasets
that comprise of in-vehicle camera footage have been made
publicly available for research on naturalistic driving stud-
ies. For instance, the Driver Anomaly Detection (DAD)
dataset [27] consists of 31 subjects that perform vari-
ous activities in a real car. The dataset is recorded syn-
chronously from the front and top views. This dataset in-
cludes approximately 538 and 145 minutes of video record-
ing for normal driving and anomalous driving, respec-
tively. Another important dataset in literature is called
Drive&Act [28]. This dataset includes twelve distraction-
related actions. The data include 9.6 million frames cap-
tured by six cameras and three imaging modalities. The
distracted driver dataset (DAD) is published in another
study [29] which involves 44 drivers. The dataset includes
14478 frames distributed over the following classes: safe
driving, phone right/left, text right/left, adjusting the radio,
drinking, hair/makeup, reaching behind, and talking to the
passenger.

From the related work study, we adopt the SlowFast fea-
ture extraction along with the sliding-window approach and
enhance it with a loss function that improves temporal lo-
calization.
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Figure 2. Overview of the methodology. Left: multi-class, multi-view structured mini-batching ensures a training without bias. Every
stream is a camera view. Middle: the network is trained using cross-entropy loss, where the target probabilities are computed individually
for every segment according to the class density within that segment. Right: localization and post-processing concatenates the class
probabilities of streams into the scene class probabilities by fusing streams. Then, the 1-D probability signal is analyzed for peaks for
every class in a scene. Significant peaks are considered predictions and are further refined by eliminating the overlapping predictions. Note
that the modules shown with a dashed border are used for training only.

3. Methodology
Our methodology is depicted in Figure 2. It con-

sists of three subsequent parts: (1) feature extraction, (2)
segment-level classification, and (3) localization and post-
processing.

3.1. Feature Extraction

Our method relies on the temporal sliding-window ap-
proach and its associated video segment features to de-
tect and localize distracted driving behaviors. We adopt
this approach in order to benefit from the mature video ac-
tion recognition literature, to exploit pre-training on large-
scale datasets in the field, and to be able to capture long-
term, complex motion cues. Without loss of generality,
we use the SlowFast [23] video recognition network as our
backbone for feature extraction. The multi-branch archi-
tecture of the SlowFast network simultaneously captures
both long-term and short-term relations, by applying tem-
poral sub-sampling to the given video segments to extract
one low (fast pathway) and one high (slow pathway) frame
rate input sequence, as in the original paper. The result-
ing fast pathway focuses on long-term actions and vice
versa. We choose this architecture for feature extraction,
since the given distracted driving classes are of varying
continuity. For instance, the action classes of eating and
drinking are usually of intermittent nature, while the phone

call (right/left) and reaching behind actions show a tempo-
ral continuity. Multiple temporal resolutions considered by
the SlowFast network enable robust feature extraction for
both cases.

The SlowFast backbone receives all video segments from
the given training videos. Formally, assume that V i

t ∈
RH×W×Tc denotes a video segment that consists of Tc

frames at the time interval [t, t+Tc−1] of the ith video with
horizontal and vertical resolutions of H and W , respec-
tively. We remove the classification head of the SlowFast ar-
chitecture to extract the high-level and descriptive features
from both the slow and fast pathways. We then combine the
branch features by averaging. The resulting feature vector,
f i
t = S(V i

t ) ∈ RNf , is used further as the segment features,
where S is the functional form of the SlowFast backbone
and Nf is the resulting feature size.

3.2. Segment-level Classification

SlowFast network is deployed with weights pre-trained
on the Kinetics-400 video action recognition dataset [30].
This large-scale dataset includes 400 classes of various hu-
man actions and, thus, ensures that the network focuses
on important spatio-temporal aspects of the data related
specifically to the driver in the scene. We adapt the pre-
trained SlowFast network to the problem at hand by adding
fully-connected layers to facilitate the target-specific learn-
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Figure 3. Bar chart depicting the effects of the temperature pa-
rameter β and f(x, ys) on the computed density-guided smooth
labels, shown as the bar height. For this example, Nc = 3 and
Tc = 64 and β is set to 10, 20, and 30, from top to bottom. The
number of frames for each class is given along the horizontal axis.

ing. Explicitly, the segment-level features extracted from
the SlowFast backbone, f i

t , are input to two fully-connected
layers that generate probabilities for each class, pit(y),
where y ∈ [1, Nc] denotes the class labels. The activation
functions of the first and the second fully-connected layer
are set to sigmoid and softmax, respectively.

Data Imbalance. Training data imbalance usually leads
to performance degradation in classification tasks. To ad-
dress this problem, we train the model with a sampler that
ensures a mini-batch to have equal amount of samples per
class and per camera view. Since we use frame-level labels
for training and the video segments may contain more than
one class, the label with the maximum number of frames
in a given segment is regarded as the label for the entire
video segment for the mini-batch sampling. On the other
hand, ensuring a balanced sampling of data from each cam-
era view improves stability of training and results in a final
model that is unbiased against input streams.

Boundary Segments. One important pitfall of the tempo-
ral sliding-window approach lies in how multi-label video
segments are utilized during training. Such segments
present a challenge to the network if the training is posed as
single-label classification. In such a case, the common ap-
proach is to either use the most commonly observed frame-
level label as the segment-level label during training, or to
discard heterogeneous segments altogether. However, we
conjecture that the overall performance of the network can
be improved if the information contained within the bound-
ary segments are better utilized. For this, we develop the
density-guided label smoothing technique.

3.2.1 Density-guided Label Smoothing

Label smoothing is a commonly used regularization tech-
nique in machine learning. The aim is to prevent over-
confidence of the model in its predictions and thus to im-
prove the overall generalization. In the work [31], the math-
ematical formulation of the label smoothing is given as

q′(k|x) = (1− ϵ)δk,y + ϵu(k), (1)

where y is the ground-truth label for a given training sample
x, q′(k|x) is the smoothed ground-truth distribution over
labels, δk,y is the Dirac delta function which equals unity
for k = y and zero otherwise, u(k) is a distribution over
labels, and ϵ controls the amount of smoothing. Usually,
the u(k) distribution is selected as a uniform distribution
with a probability 1/Nc.

The label smoothing improves generalization of the
model and increases tolerance to label noise. Overall, this
approach yields faster convergence and better performance
for many classification tasks. Here, starting from this idea,
we introduce density-guided label smoothing to facilitate
better learning from the boundary segments and achieve a
superior overall localization performance. Our technique
analyzes the distribution of frame-level labels in each con-
sidered segment to compute the smoothed labels. The num-
ber of frame-level labels in a segment can be represented by

f(x, ys) =

Tc∑
m=1

δyxm ,ys
, (2)

where yxm is the frame-level label of mth frame of the sam-
ple video segment, x, and f(x, ys) denotes the total count of
frames with the label ys in x. Then, we derive the density-
guided smooth labels for a given sample x as

q′′(k|x) = e
1
β f(x,k)

Nc∑
j=1

e
1
β f(x,j)

. (3)

In the above equation, we apply the generalized form of the
softmax function with the temperature parameter β. The
generalized softmax has several important properties bene-
ficial for the task: (1) its values are guaranteed to be within
[0; 1], regardless of the values of f(x, ys), (2) it sums up
to unity when summed for all values of k, and (3) via the
parameter β, it enables the control over smooth vs. sharp
transitions of the label change.

A bar chart depicting the effects of the temperature pa-
rameter and f(x, ys) on target labels is presented in Fig-
ure 3. As can be observed from the figure, the temperature
parameter is effective in controlling the target values to get
the desired balance between multi-labels and can function
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as regular label smoothing for the classes that are absent in
a given segment.

Loss Function. We train our network with the cross-
entropy loss for classification. Including the density-guided
label smoothing, the complete loss function is given as

L(x) = −
∑
k

pit(k)q
′′(k|x), (4)

where (i, t) ∈ B defines a unique video segment in a
mini-batch B. After training, we supply test video seg-
ments to our network, extract segment class probabilities,
pit(y), which are then further subject to the subsequent post-
processing.

3.3. Post-processing

Unlike most object detection-inspired models, the
sliding-window-based approaches require a post-processing
step to construct the final predictions. Our post-processing
pipeline consists of three consecutive parts, (1) fusion of
the stream probabilities, (2) peak detection and threshold-
ing, and (3) elimination of overlapping predictions.

1. Late-fusion of the Stream Probabilities. Our method-
ology can be applied to both multi-camera and single-
camera scenarios. However, while the single-camera case
is straightforward, the multi-camera setting requires the
fusion of individual stream probabilities into frame-level
scene probabilities. In other words, the class probabil-
ities of all synchronized camera views should be com-
bined (fused) to extract class probabilities of the multi-
camera scene under consideration. Note that, every scene
in the dataset has multiple streams (camera views). For this
fusion, we average all the segment-level class probabilities
associated with a video segment that contains the consid-
ered frame. This step computes the frame-level probabili-
ties by combining the segment-level probabilities which are
derived by the network. Here, we extend the previous works
and use the output of the softmax activation function instead
of raw class scores. Consequently, each of the resulting
normalized class probabilities exhibits the inter-class cor-
relation. As a result, the final likelihood value assigned to
a combination of a class label and a specific scene frame
includes the information regarding the likelihood of other
class probabilities for that frame.

2. Peak Detection and Thresholding. Raw predictions of
temporally localized and classified actions can be obtained
by detecting consistent peaks in the frame-level scene prob-
abilities for each class and scene separately. To detect con-
sistent peaks in this 1-D signal, first, we apply a temporal
median filtering to eliminate noise, which preserves sharp
edges that are helpful in accurate localization of actions.
Second, we determine the highest peak of the filtered sig-
nal of probabilities. If the observed peak is higher than a
pre-defined probability threshold (τ ), we consider that peak

as a detected relevant action. Finally, we determine the
fastest positive and negative changes that precede and suc-
ceed the highest peak. The resulting time instances at which
the fastest changes in probability occur are then considered
as the start and end times of the detected action. Figure 4
visualizes the step of peak detection.

3. Elimination of the Overlapping Predictions (EOP).
Due to the similar appearance of some actions, it is pos-
sible that more than one action are assigned high proba-
bilities for the same frame in individual scenes. However,
since the target dataset includes only one action for a time
instance in all scenes, overlapping predictions result in an
increased false-positive rate and consequently decrease the
overall precision of the methodology. To overcome, we first
determine the intersection-over-union (IoU) for all possible
pairs of the same-scene predictions. Then, among the full
set of predictions with an IoU overlap greater than a pre-
defined threshold (omax), we only retain the prediction with
the highest peak in the final output.

4. Experiments
4.1. Track3 Dataset

The 2022 NVIDIA AI City Challenge presents natural-
istic driving data containing 90 video clips (14 hours in to-
tal) recorded from different angles by three synchronized
cameras mounted in a car. Each video is about 10 minutes
long with a resolution of 1920×1080 pixels. The dataset
consists of 15 drivers with and without appearance blocks
(e.g. sunglasses, hat) performing 18 different tasks (e.g.
phone call, eating, and reaching back) once, in random or-
der throughout a video clip. The whole dataset is split into
three: A1, A2, and B, each containing five drivers. While
the A1 dataset is provided with the ground-truth labels of
the start time, end time, and the type of distracting behav-
iors, the A2 dataset is provided without labels. The main
target of the challenge is to classify the distracted behav-
ior activities executed by the driver in a given time frame
on the A2 testing dataset, by employing the A1 dataset for
training. Organizers reserve the B dataset for later testing to
consider the final awards for the top performers.

4.2. Implementation Details

1. Feature Extraction. We adopt the SlowFast model,
pre-trained on the Kinetics-400 video action recognition
dataset, to our task of obtaining the feature vectors. As a
data-processing step, we re-size and crop each video frame
to 256×256 pixels and feed the SlowFast model accord-
ingly, by repeating this process for each 64-frame segment
of the video clip with a temporal stride 1. The size of output
feature vector, Nf , is 2,304 for each segment.

2. Segment-level Classification. The extracted feature
vectors f i

t are given as an input to the first layer of two fully-
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connected layers, where the sigmoid activation function is
applied to a hidden layer size of 64. The last layer generates
probabilities for each action class by utilizing the softmax
activation function. We adopt the Adam optimizer with ini-
tial learning rate 5×10−5 and weight decay 5×10−4. As
the loss function, the cross-entropy loss with density-guided
label smoothing is used in our proposed model. The tem-
perature parameter, β, is set to 5. We employ the GTX-
1080 GPU for the training process and set the batch size
to 270, which handles 15 training samples for each action
class within three camera views (e.g. rear, dash, and right).

3. Localization and Post-processing. We apply the tem-
poral median filtering with a filter size of 301 frames. Min-
imum height and width for the peak detection are set empir-
ically to 0.05, and 200 frames, respectively.

4.3. Evaluation Metrics

Evaluation for 2022 NVIDIA AI City Challenge Track3
is based on the model action identification performance,
measured by the F1 score. For computing the F1 score,
a true positive (TP) action identification is considered when
an action is correctly identified as starting within one sec-
ond of the start time and ending within one second of the
end time of the action. A false positive (FP) is an identified
action that is not a TP action. Finally, a false negative (FN)
action is a ground-truth action that is not correctly identi-
fied. The F1 score is the harmonic mean of recall Rc and
precision Pr, specified by

F1 = 2× Pr ×Rc

Pr +Rc
. (5)

The precision is calculated as the number of true positives
divided by the total number of true positives and false posi-
tives, which is given by:

Pr =
TP

TP + FP
. (6)

The recall is calculated as the number of true positives di-
vided by the total number of true positives and false nega-
tives, which is given by:

Rc =
TP

TP + FN
. (7)

Although the final results of the challenge are announced
based on the F1 score, the evaluation system also presents
recall and precision metrics.

4.4. Experimental Results

We evaluate the proposed methodology on the 2022
NVIDIA AI City Challenge Track3 A2 test dataset. Some
of the experimental results are summarized in Fig. 4. In this
figure, example images are shown from the A2 test dataset,

from top left to the bottom, of texting (right), pick-up from
the floor (driver), pick-up from the floor (passenger), and
hand-on-head action classes. The example pictures, includ-
ing the sunglasses appearance block, are presented only for
the rear-view camera, since all camera views are synchro-
nized. From top right to the bottom, we display graphs in-
cluding the start and end time of each class after localiza-
tion and post-processing steps. The vertical axis of the each
graph indicates the computed concatenated stream proba-
bilities of corresponding frames, while the horizontal axis
shows the frame numbers within the video clip per class.
As shown in Fig. 4, the proposed methodology can predict
the first and last action classes’ start and end times with
confidence. Although other peaks appear in the second and
third graphs, the proposed algorithm still delivers the result
correctly with the help of the stages on peak detection &
thresholding and overlapping-prediction elimination. Over-
all, visual inspection of the corresponding video data ver-
ifies that most of the predictions of our model were accu-
rately localized and classified.

We achieve 0.2710 F1 score and rank the 9th place
among 27 teams in Track3, as can be seen from Tab. 2. In
addition to the leaderboard results, we were able to test only
a subset of our contributions on the evaluation system. For
instance, Tab. 1 shows the improvement of performing the
overlapping-prediction elimination step within the localiza-
tion and post-processing stage.

Table 1. Improvement of overlapping-prediction elimination step
on the general leaderboard.

Method F1 score Precision Recall

Baseline 0.2636 0.2706 0.2570
BL + EOP 0.2710 0.3206 0.2346

4.5. Discussion

Considering the correctly identified distracting activity
as starting within one second of the start time and ending
within one second of the end time of the activity, which
is defined as part of the evaluation criteria, makes this de-
tection task significantly difficult. One of the related chal-
lenges is that accurately defining the ground-truth labels of
the start and end times can be subjective for some activi-
ties. For instance, in a drinking activity, some may anno-
tate the start time as touching the bottle, while others may
annotate the moment the liquid enters the mouth, or even
the moment of reaching out to the bottle. This ambiguity
of timing makes the definition of the action label uncertain
possibly leading to false model prediction because those ex-
amples may differ by two to three seconds. Another chal-
lenge is that the range of possible distracted behaviour types
is broader than the given set of classes, e.g. listening to in-
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Figure 4. Experimental results of our methodology. From top left to bottom: example images of texting by the right hand, pick up from
the floor on the driver side, pick up from the floor from the passenger side, hand on head action classes. From top right to bottom: graphs
show the predicted start and end times (ts(i), te(i)) for each class of the video clip. After obtaining the concatenated stream probabilities
for each frame within the video clip, we apply the localization and post-processing steps to locate each class’s start and end time.
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Table 2. Final results based on F1 score on 2022 NVIDIA AI City
Challenge Track3 from top-15 on the public leaderboard.

Rank Team ID Team Name F1

1 72 VTCC-UTVM 0.3492
2 43 Stargazer 0.3295
3 97 CybercoreAI 0.3248
4 15 OPPilot 0.3154
5 78 SIS Lab 0.2921
6 16 BUPT-MCPRL2 0.2905
7 106 Winter is Coming 0.2902
8 124 HSNB 0.2849
9 54 VCA 0.2710
10 95 Tahakom 0.2706
11 1 SCU Anastasiu 0.2558
12 148 union 0.2301
13 76 Starwar 0.2160
14 85 Aespa winter 0.1440
15 69 SEEE-HUST 0.1348

structions, organizing the objects on the passenger seat, and
taking off the mask. As a consequence, these actions can be
easily mismatched with the defined classes of the dataset.

As a possible improvement for alleviating some ambi-
guity, the audio modality of three camera view recordings
may be exploited as well. Audible information can be in-
troduced as additional data without large extra cost. The
model based on the proposed methodology can then learn
better by jointly analyzing the audio and video datasets.

5. Conclusion
In this paper, we proposed a methodology that local-

izes and classifies distracted driver behavior from in-vehicle
video data. This approach relies on the fusion of CNN-
based video segment features. To enable better learning, we
have developed a novel technique called the density-guided
label smoothing, which improves the localization perfor-
mance. Furthermore, we have designed a post-processing
step, which efficiently combines data from multiple cam-
eras and eliminates overlapping predictions by retaining
only the most confident prediction. This filtering of the
predictions improves the precision of the methodology by
eliminating false positives. Performance evaluation of our
methodology on the A2 test set of the naturalistic driving
action recognition track of the 2022 NVIDIA AI City Chal-
lenge yields competitive results.
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